首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel, non-toxic antifouling technologies are focused on the manipulation of surface topography to deter settlement of the dispersal stages of fouling organisms. This study investigated the effect of the aspect ratio (feature height/feature width) of topographical features engineered in polydimethylsiloxane, on the settlement of cyprids of Balanus amphitrite and zoospores of Ulva linza. The correlation of relative aspect ratios to antifouling efficacy was proven to be significant. An increase in aspect ratio resulted in an increase of fouling deterrence for both zoospores and cyprids. The spore density of Ulva was reduced 42% with each unit increase in aspect ratio of the Ulva-specific Sharklet AF topography. Similarly, the number of settled cyprids was reduced 45% with each unit increase in aspect ratio. The newly described barnacle-specific Sharklet AF topography (40 microm feature height, aspect ratio of 2) reduced cyprid settled by 97%. Techniques have been developed to superimpose the smaller Ulva-specific topographies onto the barnacle-specific surfaces into a hierarchical structure to repel both organisms simultaneously. The results for spore settlement on first-generation hierarchical surfaces provide insight for the efficacious design of such structures when targeting multiple settling species.  相似文献   

2.
Bioadhesion and surface wettability are influenced by microscale topography. In the present study, engineered pillars, ridges and biomimetic topography inspired by the skin of fast moving sharks (Sharklet AF) were replicated in polydimethylsiloxane elastomer. Sessile drop contact angle changes on the surfaces correlated well (R2 = 0.89) with Wenzel and Cassie and Baxter's relationships for wettability. Two separate biological responses, i.e. settlement of Ulva linza zoospores and alignment of porcine cardiovascular endothelial cells, were inversely proportional to the width (between 5 and 20 microm) of the engineered channels. Zoospore settlement was reduced by approximately 85% on the finer (ca 2 microm) and more complex Sharklet AF topographies. The response of both cell types suggests their responses are governed by the same underlying thermodynamic principles as wettability.  相似文献   

3.
Abstract

Bioadhesion and surface wettability are influenced by microscale topography. In the present study, engineered pillars, ridges and biomimetic topography inspired by the skin of fast moving sharks (Sharklet AF?) were replicated in polydimethylsiloxane elastomer. Sessile drop contact angle changes on the surfaces correlated well (R2 = 0.89) with Wenzel and Cassie and Baxter's relationships for wettability. Two separate biological responses, i.e. settlement of Ulva linza zoospores and alignment of porcine cardiovascular endothelial cells, were inversely proportional to the width (between 5 and 20 μm) of the engineered channels. Zoospore settlement was reduced by ~85% on the finer (ca 2 μm) and more complex Sharklet AF? topographies. The response of both cell types suggests their responses are governed by the same underlying thermodynamic principles as wettability.  相似文献   

4.
The settlement and release of Ulva spores from chemically modified, micro-engineered surface topographies have been investigated using poly(dimethyl siloxane) elastomers (PDMSe) with varying additions of non-network forming poly(dimethyl siloxane) based oils. The topographic features were based on 5 microns wide pillars or ridges separated by 5, 10, or 20 microns wide channels. Pattern depths were 5 or 1.5 microns. Swimming spores showed no marked difference in settlement on smooth surfaces covered with excess PDMS oils. However, incorporation of oils significantly reduced settlement density on many of the surfaces with topographic features, in particular, the 5 microns wide and deep channels. Previous results, confirmed here, demonstrate preferences by the spores to settle in channels and against pillars with spatial dimensions of 5 microns, 10 microns and 20 microns. The combination of lubricity and pillars significantly reduced the number of attached spores compared to the control, smooth, unmodified PDMSe surfaces when exposed to turbulent flow in a flow channel. The results are discussed in relation to the energy needs for spores to adhere to various surface features and the concepts of ultrahydrophobic surfaces. A factorial, multi-level experimental design was analyzed and a 2nd order polynomial model was regressed for statistically significant effects and interactions to determine the magnitude and direction of influence on the spore density measurements between factor levels.  相似文献   

5.
The settlement and release of Ulva spores from chemically modified, micro-engineered surface topographies have been investigated using poly(dimethyl siloxane) elastomers (PDMSe) with varying additions of non-network forming poly(dimethyl siloxane) based oils. The topographic features were based on 5?μm wide pillars or ridges separated by 5, 10, or 20?μm wide channels. Pattern depths were 5 or 1.5?μm. Swimming spores showed no marked difference in settlement on smooth surfaces covered with excess PDMS oils. However, incorporation of oils significantly reduced settlement density on many of the surfaces with topographic features, in particular, the 5?μm wide and deep channels. Previous results, confirmed here, demonstrate preferences by the spores to settle in channels and against pillars with spatial dimensions of 5?μm, 10?μm and 20?μm. The combination of lubricity and pillars significantly reduced the number of attached spores compared to the control, smooth, unmodified PDMSe surfaces when exposed to turbulent flow in a flow channel. The results are discussed in relation to the energy needs for spores to adhere to various surface features and the concepts of ultrahydrophobic surfaces. A factorial, multi-level experimental design was analyzed and a 2nd order polynomial model was regressed for statistically significant effects and interactions to determine the magnitude and direction of influence on the spore density measurements between factor levels.  相似文献   

6.
Effect of surface roughness of ground titanium on initial cell adhesion   总被引:4,自引:0,他引:4  
The effect of surface roughness of ground Ti on the initial adhesion of osteoblast-like U-2 OS cells was investigated in this study. Different numbers (#120, #600, and #1500) of SiC sandpaper and two Al2O3 polishing powder (0.3 and 1 microm) were used to prepare the metal specimens with varying degrees of surface roughness. Surface roughness (Ra) was measured by profilometry. Surface topography was observed using an atomic force microscope. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used to measure the optical density (OD) of specimens after 2 h of cell incubation. The OD value was analyzed by one-way ANOVA for analyzing the factor of surface roughness. Crystal violet staining technique was used to characterize the cell spreading. Results showed that the specimen of #1500 Ti (Ra: 0.15 microm) had the highest OD value. The specimens polished with 0.3 and 1 microm Al2O3 powder (Ra: 0.05 and 0.07 microm) exhibited the worst cell adhesion behavior. Contact guidance of cells could be observed on the rougher #600 and #120 specimens (Ra: 0.33 and 1.20 microm). This study concludes that the surface roughness (Ra: 0.05-1.20 microm) of ground Ti has a highly significant influence on the initial adhesion of osteoblast-like U-2 OS cells. The ground Ti with an Ra of 0.15 microm shows the optimal cell adhesion behavior with respect to either the rougher or smoother specimens.  相似文献   

7.
Topographic features change the hydrodynamic regime over surfaces subjected to flow. Hydrodynamic microenvironments around topographic structures may have consequences for recruitment and removal of propagules of marine benthic organisms. The settlement and adhesion of zoospores from the green alga Ulva linza (syn. Enteromorpha linza) to defined topographies was investigated. A range of topographic size scales (Rz: 25-100 microm) was manufactured from plankton nets, creating patterns with ridges and depressions. The topographic scales span a roughness similar to that of natural substrata and antifouling coatings. Spores were removed from the surfaces by a calibrated water jet. Fewer spores were removed from the smallest topographic structure tested (Rz: 25 microm) compared to both the smooth (Rz: 1) and the roughest (Rz: 100 microm) structures. Zoospores that settled in depressions were less likely to be removed compared to spores on the ridges. The results in terms of the interaction between surface topography and hydrodynamic forces have implications for both natural substrata exposed to wave action and antifouling surfaces on ships' hulls. The possible effects of topography on increasing zoospore adhesion and offering a refuge from hydrodynamic forces are discussed.  相似文献   

8.
Myxobolus metynnis n. sp. (Phylum Myxozoa) is described in the connective subcutaneous tissues of the orbicular region of the fish, Metynnis argenteus (Characidae), collected in the lower Amazon River, near the city of Peixe Boi, Pará State, Brazil. Polysporic, histozoic plasmodia were delimited by a double membrane with numerous microvilli on the peripheral cytoplasm. Several life-cycle stages, including mature spores, were observed. An envelope formed by numerous fine and anastomosed microfibrils was observed at the spore surface. The spore body presented an ellipsoidal shape and was about 13.1 microm long, 7.8 microm wide, and 3.9 microm thick. Elongated-pyriform polar capsules were of equal size, measuring 5.2 microm in length, 3.2 microm in width, and possessing a polar filament with 8-9 turns around the longitudinal axis. The binucleated sporoplasm contained a vacuole and numerous sporoplasmosomes. These were circular in cross-section, showing an adherent eccentric, dense structure, with a half-crescent section. Based on the morphological differences and host specificity, we propose that the parasite is a new species named Myxobolus metynnis n. sp.  相似文献   

9.

Enteromorpha , the most important macroalga that fouls ships, produces very large numbers of swimming spores that respond to a number of settlement cues. Responses to topographic cues have been investigated using surfaces with defined microtopographies fabricated from polydimethyl siloxane elastomer (PDMS). The topographic features were based on two designs, (a) a series of 5 or 1.5 w m deep valleys with valley floors and ridges varying between 5 and 20 w m, and (b) pillars of 5 w m diameter and 5 or 1.5 w m height, spaced 5-20 w m apart. The features were arranged in blocks to provide the swimming spores with a 'choice' of where to settle. Swimming spores settled preferentially in the valleys and against the pillars. The number of spores that settled increased very substantially as the width of the valley decreased. The majority of spores settled in the angle between the valley floor and sidewall. Lower numbers settled on the surfaces with lower profile features. Silica beads of similar dimension to the spore body were used to determine whether the spatial relationships between settled spores and the topographic features were a consequence of active settlement behaviours. The results are discussed in relation to the energy needs for spores to adhere to various surface features.  相似文献   

10.
Acaulospora alpina sp. nov. forms small (65-85 microm diam), dark yellow to orange-brown spores laterally on the neck of hyaline to subhyaline sporiferous saccules. The spores have a three-layered outer spore wall, a bi-layered middle wall and a three-layered inner wall. The surface of the second layer of the outer spore wall is ornamented, having regular, circular pits (1.5-2 microm diam) that are as deep as wide and truncated conical. A "beaded" wall layer as found in most other Acaulospora spp. is lacking. The spore morphology of A. alpina resembles that of A. paulinae but can be differentiated easily by the unique ornamentation with the characteristic pits and by the spore color. A key is presented summarizing the morphological differences among Acaulospora species with an ornamented outer spore wall. Partial DNA sequences of the ITS1, 5.8S subunit and ITS2 regions of ribosomal DNA show that A. alpina and A. paulinae are not closely related. Acaulospora lacunosa, which has similar color but has generally bigger spores, also has distinct rDNA sequences. Acaulospora alpina is a characteristic member of the arbuscular mycorrhizal fungal communities in soils with pH 3.5-6.5 in grasslands of the Swiss Alps at altitudes between 1800 and 2700 m above sea level. It is less frequent at 1300-1800 m above sea level, and it so far has not been found in the Alps below 1300 m or in the lowlands of Switzerland.  相似文献   

11.
12.
Giardia lamblia is an intestinal protozoan that inhabits the intestinal tract of man and other mammals by attaching to the mucosal surface via the contractile activity of an attachment organelle called the ventral adhesive disk. We have investigated the presence of other attachment mechanisms in G. lamblia trophozoites by using microfabricated substrates that sterically interfere with formation of the hypothesized "negative pressure" under the ventral adhesive disk that would mediate attachment to a substratum. Pillars measuring 1 microm high and 2 microm in diam. were constructed in microarrays with spacings smaller than the diameter of the ventral adhesive disk. Using high resolution field emission scanning electron microscopy, the attachment of trophozoites to the tops of pillars in the microfabricated substrates was investigated. Firm adhesion of trophozoites was observed to be mediated by direct attachment of the ventrolateral flange membrane to the tops of microfabricated pillars. Attachment to microfabricated surfaces was 16% of that observed for attachment mediated by the ventral adhesive disk (4.4 +/- 1.5 cells/100 micro2 micropillar surface vs. 25.9 +/- 3.1 cells/100 micro2 flat substrate, p < 0.0001) This is the first report of trophozoite adhesion to a substratum by a mechanism other than the direct attachment of the ventral adhesive disk, and provides experimental evidence that the ventrolateral flange may play a role in trophozoite adhesion. A hypothesis is presented describing how the adhesive nature of the ventrolateral flange might be involved in normal attachment of G. lamblia trophozoites to a substratum.  相似文献   

13.
The processes leading to bacterial colonization on solidwater interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 mum (for silicon) to 0.015 mum (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varried by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.  相似文献   

14.
The mechanism of inhibition of yeast mitochondrial F(1)-ATPase by its natural regulatory peptide, IF1, was investigated by correlating the rate of inhibition by IF1 with the nucleotide occupancy of the catalytic sites. Nucleotide occupancy of the catalytic sites was probed by fluorescence quenching of a tryptophan, which was engineered in the catalytic site (beta-Y345W). Fluorescence quenching of a beta-Trp(345) indicates that the binding of MgADP to F(1) can be described as 3 binding sites with dissociation constants of K(d)(1) = 10 +/- 2 nm, K(d2) = 0.22 +/- 0.03 microm, and K(d3) = 16.3 +/- 0.2 microm. In addition, the ATPase activity of the beta-Trp(345) enzyme followed simple Michaelis-Menten kinetics with a corresponding K(m) of 55 microm. Values for the K(d) for MgATP were estimated and indicate that the K(m) (55 microm) for ATP hydrolysis corresponds to filling the third catalytic site on F(1). IF1 binds very slowly to F(1)-ATPase depleted of nucleotides and under unisite conditions. The rate of inhibition by IF1 increased with increasing concentration of MgATP to about 50 mum, but decreased thereafter. The rate of inhibition was half-maximal at 5 microm MgATP, which is 10-fold lower than the K(m) for ATPase. The variations of the rate of IF1 binding are related to changes in the conformation of the IF1 binding site during the catalytic reaction cycle of ATP hydrolysis. A model is proposed that suggests that IF1 binds rapidly, but loosely to F(1) with two or three catalytic sites filled, and is then locked in the enzyme during catalytic hydrolysis of ATP.  相似文献   

15.
Sphaeromyxa zaharoni n. sp. (Myxosporea) is described from the gallbladder of devil firefish, Pterois miles (Scorpaenidae), from coral reefs of the Gulf of Eilat, Israel, northern Red Sea. The parasite was found also in bearded scorpionfish, Scorpaenopsis barbata, from the same area. This is the first report on Sphaeromyxa sp. from this zoogeographical region. The plasmodia are amoeboid when young, becoming disc-shaped and elongated when mature. In paraffin sections, the plasmodium periphery appears as a finely granulated, strongly eosinophilic layer with an intricate surface membrane network. Sphaeromyxa zaharoni n. sp. is polysporous, disporoblastic, and has asynchronous sporogenesis. The mature spore is elongated and fusiform, has delicately ridged valves, and contains a single, binucleated sporoplasm. In valvular view, the tips are truncated. The mean spore size is length 14.5 microm, width 4.8 microm, and polar capsule 4.8 x 3.4 microm. The 2 equally sized ovoid polar capsules are positioned at opposite ends of the spore, each containing a filament loosely folded in 2 loops. The fine structure of the sporoblast and spore corresponded with previously studied Sphaeromyxa species. According to small-subunit ribosomal DNA gene sequence analysis, S. zaharoni n. sp. is most closely related to 2 Myxidium spp. The close phylogenetic relatedness of Sphaeromyxa and Myxidium and similar spore morphology raises the question whether these 2 genera should be maintained in separate families and suborders.  相似文献   

16.
The fine structure of oocytes of Urechis caupo is described for seven arbitrary stages ranging from the smallest oocytes (7 mum in diameter) in the coelom to the mature oocytes (115 mum in diameter) in the storage organs. Although most types of cytoplasmic organelles accumulate more or less continuously, yolk granules do not appear until oocytes reach a diameter of 35 mum, and there is stage-specific synthesis of cortical granules in 60-80 mum oocytes. In the nucleus a single nucleolus first appears when an oocyte is 15 mum in diameter. Then a nucleolus satellite, which is about 3 mum in diameter, forms in 30 mum oocytes; this nucleolus satellite later (60-70 mum oocytes) becomes surrounded by 750 nm dense spherical bodies. Large (2-4 mum in diameter) juxtachromosomal spherules occur only in the nuclei of mature oocytes. Microvilli become progressively more numerous and longer until the oocyte reaches a diameter of 90 mum; their tips project 1 mum beyond the fibrous surface coat, which is 2 mum thick when well developed. Near the end of oocyte growth, the microvilli retract into the surface coat leaving their pinched-off tips adhering to the outside of the coat.  相似文献   

17.
Henneguya rhamdia n. sp. is described in the gill filaments of the teleost fish Rhamdia quelen, collected from the Peixe Boi River, State of Pará, Brazil. This myxosporean produced spherical to ellipsoidal plasmodia, up to 300 microm in diameter, which contained developmental stages, including spores. Several dense bodies up to 2 microm in diameter were observed among the spores. The spore body was ellipsoidal (13.1 microm in length, 5.2 microm in width, and 2.5 microm in thickness) and each of the two valves presented a tapering tail (36.9 microm in length). These valves surrounded the binucleated sporoplasm cell and two equal ellipsoidal polar capsules (4.7 x 1.1 microm), which contained 10-11 (rarely 12) polar filament coils. The sporoplasm contained sporoplasmosomes with a laterally eccentric dense structure with a half-crescent section. Based on the data obtained by electron microscopy and on the host specificity, the spores differed from previously described Henneguya species, mainly in their shape and size, number and arrangement of the polar filament coils, and sporoplasmosome morphology.  相似文献   

18.
Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.  相似文献   

19.
Intracellular calcium concentration ([Ca2+]i) governs the contractile status of arteriolar smooth muscle cells (SMC). Although studied in vitro, little is known of SMC [Ca2+]i dynamics during the local control of blood flow. We tested the hypothesis that the rise and fall of SMC [Ca2+]i underlies arteriolar constriction and dilation in vivo. Aparenchymal segments of second-order arterioles (diameter 35 +/- 2 microm) were prepared in the superfused cheek pouch of anesthetized hamsters (n = 18) and perifused with the ratiometric dye fura PE-3 (AM) to load SMC (1 microM, 20 min). Resting SMC [Ca2+]i was 406 +/- 37 nM. Elevating superfusate O2 from 0 to 21% produced constriction (11 +/- 2 microm) that was unaffected by dye loading; [Ca2+]i increased by 108 +/- 53 nM (n = 6, P < 0.05). Cycling of [Ca2+]i during vasomotion (amplitude, 150 +/- 53 nM; n = 4) preceded corresponding diameter changes (7 +/- 1 microm) by approximately 2 s. Microiontophoresis (1 microm pipette tip; 1 microA, 1 s) of phenylephrine (PE) transiently increased [Ca2+]i by 479 +/- 64 nM (n = 8, P < 0.05) with constriction (26 +/- 3 microm). Flushing blood from the lumen with saline increased fluorescence at 510 nm by approximately 45% during excitation at both 340 and 380 nm with no difference in resting [Ca2+]i, diameter or respective responses to PE (n = 7). Acetylcholine microiontophoresis (1 microA, 1 s) transiently reduced resting SMC [Ca2+]i by 131 +/- 21 nM (n = 6, P < 0.05) with vasodilation (17 +/- 1 microm). Superfusion of sodium nitroprusside (10 microM) transiently reduced SMC [Ca2+]i by 124 +/- 18 nM (n = 6, P < 0.05), whereas dilation (23 +/- 5 microm) was sustained. Resolution of arteriolar SMC [Ca2+]i in vivo discriminates key signaling events that govern the local control of tissue blood flow.  相似文献   

20.
When cultures of Brachyspira hyodysenteriae were grown under a wide range of in vitro conditions, at least 1% of the cells formed spherical bodies different to the normal helical form. This percentage increased considerably in aging cultures or following their incubation in caramelized media. Spherical body formation was initiated from a terminal localized swelling of the outer sheath followed by a retraction of the protoplasmic cylinder into the resulting swollen vesicle. As this occurred, the periplasmic flagella seemed to unwind from the protoplasmic cylinder. Once retracted, the protoplasmic cylinder was found to be wrapped in an organized manner around the inner surface of the membrane of the swollen vesicle. Although most were 2-3 microm in diameter, some much larger spherical bodies (6-12 microm diameter) were occasionally seen, with a corresponding increase in the visible number of peripheral protoplasmic cylinder cross-sections. Spherical bodies from older cultures did not contain protoplasmic cylinders arranged around the periphery, but instead were characterized by the presence of a centrally located, electron-dense body c. 0.5-0.8 mum in diameter. Brachyspira hyodysenteriae spherical bodies differ in both their structural organization and probable method of formation from similar structures described in other spirochaete genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号