首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The development of thermophysiological responses during four consecutive exercise/rest sessions in the cold was studied in men wearing chemical protective clothing and a face mask. Six men repeated four exercise/rest sessions during 8 h at –10°C. Each session consisted of step exercise (240 W · m−2) for 60 min and rest for another 60 min. Rectal and skin temperatures were measured continuously and thermal sensations were obtained at 30-min intervals. Entering the cold from a warm environment and the onset of exercise resulted in a decrease in skin temperatures during the first session and the decrement in the temperatures of the extremities continued for 10–20 min during the following period of exercise. Torso skin temperature was at its lowest during the first rest period. After the first session of cold exposure the range and the level of variation in mean body temperature ( b) followed a pattern which was repeated until the end of the experiment. However, the torso skin temperatures increased gradually until the fourth session, while the temperatures of the extremities, in contrast, tended to decrease up to the third session. In conclusion, the present results indicated that although b, reflecting the whole body heat balance, showed a typical pattern of change after the first session (2 h), the torso area was warming until the end of the cold exposure while the extremities continued to cool down up to the third session (6 h), obviously due to a prolonged redistribution of the circulation. Accepted: 29 May 1998  相似文献   

2.
The present paper aimed at learning the effects of two different levels of air permeability and moisture absorption on clothing microclimate and subjective sensation in sedentary women. Three kinds of clothing ensemble were investigated: 1) polyester clothing with low moisture absorption and low air permeability (A clothing); 2) polyester clothing with low moisture absorption and high air permeability (B clothing); and 3) cotton clothing with high moisture absorption and high air permeability (C clothing). After 20 min of dressing time, the room temperature and humidity began to rise from 27 degrees C and 50% rh to 33 degrees C and 70% rh over 20 min, and it was maintained for 30 min (Section I); it then began to fall to 27 degrees C and 50% rh over 20 min, and it was maintained there for 20 min (Section II). The subject sat quietly on a chair for 110 min. The main findings are summarized as follows: 1) The clothing surface temperature was significantly higher in C clothing than in B clothing during section I, but it was significantly higher in B clothing than in C clothing during section II. 2) Although the positive relationship between the microclimate humidity and forearm sweat rate was significantly confirmed in all three kinds of clothing, the microclimate humidity at the chest for the same sweat rate was lower in C clothing than in A and B clothing. These results were discussed in terms of thermal physiology.  相似文献   

3.
The aim of the present study was to evaluate the response of adrenocorticotropin ([ACTH]) and growth hormone ([GH]) concentrations to a typical aerobic swimming set during a training season. Nine top-level male endurance swimmers (age range 17–23 years) were tested during three training sessions occurring 6, 12 and 18 weeks after the beginning of the season. During each session, after a standard warm-up, the swimmers performed a training set of 15 × 200-m freestyle, with 20 s of rest between repetitions, at a predetermined individual speed. Blood samples were collected before warm-up and at the end of the training set. A few days before each session, the individual swimming velocity corresponding to the 4 mmol · l−1 blood lactate concentration (v 4) was assessed as a standard of aerobic performance. Aerobic training affected v 4 levels, which were highest 18 weeks after the beginning of the season; at the same time, while [ACTH] response was attenuated, [GH] response was enhanced. These results could be considered as adaptations to the exercise intensity. In our training programme, these adaptations seemed to have occurred between the 12th and 18th weeks of the training season. Accepted: 21 April 1998  相似文献   

4.
The thermoregulatory responses of ten paraplegic (PA; T3/4-L4) and nine able-bodied (AB) upper body trained athletes were examined at rest and during prolonged arm-cranking exercise and passive recovery. Exercise was performed for 90 min at 80% peak heart rate, and at 21.5 (1.7)°C and 47.0 (7.8)% relative humidity on a Monark cycle ergometer (Ergomedic 814E) adapted for arm exercise. Mean peak oxygen uptake values for the PA and AB athlete groups were 2.12 (0.41) min−1 and 3.19 (0.38) l · min−1, respectively (P<0.05). At rest, there was no difference in aural temperature between groups [36.2 (0.4)°C for both groups]. However, upper body skin temperatures for the PA athletes were approximately 1.0 °C warmer than for the AB athletes, whereas lower body skin temperatures were cooler than those for the AB athletes (1.3 °C and 2.7 °C for the thigh and calf, respectively). Upper and lower body skin temperatures for the AB athletes were similar. During exercise, blood lactate peaked after 15 min of exercise for both groups [3.33 (1.26) mmol · l−1 and 4.30 (1.03) mmol · l−1 for the PA and AB athletes, respectively, P<0.05] and decreased throughout the remainder of the exercise period. Aural temperature increased by 0.7 (0.5)°C and 0.6 (0.4)°C for the AB and PA athletes, respectively. Calf skin temperature for the PA athletes increased during exercise by 1.4 (2.8)°C (P<0.05), whereas a decrease of 0.8 (2.0)°C (P<0.05) was observed for the AB athletes. During the first 20 min of recovery from exercise, the calf skin temperature of the AB athletes decreased further [−2.6 (1.3)°C; P<0.05]. Weight losses and changes in plasma volume were similar for both groups [0.7 (0.5) kg and 0.7 (0.4) kg; 5.4 (4.9)% and 9.7 (6.2)% for the PA and AB athletes, respectively]. In conclusion, the results of this study suggest that the PA athletes exhibit different thermoregulatory responses at rest and during exercise and passive recovery to those of upper body trained AB athletes. Despite this, during 90 min of arm-crank exercise in a cool environment, the PA athletes appeared to be at no greater thermal risk than the AB athletes. Accepted: 7 May 1997  相似文献   

5.
The purpose of this study was to compare the effects of continuous and intermittent exercise training on serum testosterone [T] and corticosterone concentrations [Cort] during normoxia and hypobaric hypoxia. Male rats swam with loads of 3% (normoxia) or 2.25% (462 mmHg) body mass for 60 min in the continuous training groups, and 15 min separated by a 7-min rest  × 4, with 60-min total exercise duration in the intermittent training groups, 5␣days · week−1 for 6 weeks. Serum [T] were measured at␣rest and following exercise after 6 weeks of training. Serum [Cort] were measured immediately after an acute period of exercise or after 6 weeks of training at rest and following exercise. Continuous exercise induced decreases in [T] under both conditions. Intermittent exercise showed a tendency to increase [T] during normoxia, but caused a suppression during hypobaric hypoxia. The [Cort] was elevated by a similar margin after an acute period of exercise during both conditions. After 6 weeks of training, however, [Cort] increased slightly after exercise during normoxia. A lower resting [Cort], which was increased after exercise, was found in the training groups during hypoxia. No relevant relationship was found between the behaviours of [T] and [Cort] after exercise during either conditions. Accepted: 20 April 1998  相似文献   

6.
To examine the influence of light exercise on cardiac responses during recovery from exercise, we measured heart rate (HR), stroke volume (SV), and cardiac output ( c) in five healthy untrained male subjects in an upright position before, during, and after 10-min steady-state cycle exercise at an exercise intensity of 170 W, corresponding to a mean of 68 (SD 4)% of maximal oxygen uptake. The recovery phase was evaluated separately for three different conditions: 10 min of complete rest (passive recovery), 7 min of pedalling at 20-W exercise intensity followed by 3 min of rest (partially active recovery), and 7 min of pedalling at 40-W exercise intensity followed by 3 min of rest (partially active recovery), on an upright cycle ergometer. The time courses of decreases in HR in the two active recovery phases at different exercise intensities were almost identical to those in the passive recovery phase. However, the subsequent HR reductions during the rest after active recovery at 20 W and at 40 W were mean 7.5 (SD 4.4) and mean 10.0 (SD 3.1) beats · min−1, respectively, both of which were significantly larger (P<0.05 and P<0.005) than the corresponding reduction [1.4 (SD 2.5) beats · min−1] for passive recovery. The SV values at the two exercise intensities during the active recovery periods were maintained at levels similar to that during 170-W steady-state exercise. In contrast, the SV during passive recovery decreased gradually to a level significantly below the initial baseline level at rest before exercise (P<0.05). The resultant time courses of CO values during active recovery were significantly higher (each P<0.05) than that during passive recovery. It was concluded from these findings that light post-exercise physical activity plays an important role in facilitating the venous return from the muscles and in restoring the elevated HR to the pre-exercise resting level. Accepted: 17 September 1997  相似文献   

7.
Elite distance runners participated in one of two studies designed to investigate the effects of moderate altitude training (inspiratory partial pressure of oxygen ≈115–125 mmHg) on submaximal, maximal and supramaximal exercise performance following return to sea-level. Study 1 (New Mexico, USA) involved 14 subjects who were assigned to a 4-week altitude training camp (1500–2000 m) whilst 9 performance-matched subjects continued with an identical training programme at sea-level (CON). Ten EXP subjects who trained at 1640 m and 19 CON subjects also participated in study 2 (Krugersdorp, South Africa). Selected metabolic and cardiorespiratory parameters were determined with the subjects at rest and during exercise 21 days prior to (PRE) and 10 and 20 days following their return to sea-level (POST). Whole blood lactate decreased by 23% (P < 0.05 vs PRE) during submaximal exercise in the EXP group only after 20 days at sea-level (study 1). However, the lactate threshold and other measures of running economy remained unchanged. Similarly, supramaximal performance during a standardised track session did not change. Study 2 demonstrated that hypoxia per se did not alter performance. In contrast, in the EXP group supramaximal running velocity decreased by 2% (P < 0.05) after 20 days at sea-level. Both studies were characterised by a 50% increase in the frequency of upper respiratory and gastrointestinal tract infections during the altitude sojourns, and two male subjects were diagnosed with infectious mononucleosis following their return to sea-level (study 1). Group mean plasma glutamine concentrations at rest decreased by 19% or 143 (74) μM (P < 0.001) after 3 weeks at altitude, which may have been implicated in the increased incidence of infectious illness. Accepted: 19 March 1998  相似文献   

8.
The effect of 42 g of protein ingested pre- and post-exercise on recovery from an acute resistance exercise session was examined in 15 male strength/power athletes who were randomly divided into a supplement (SUP) or placebo (PL) group. Subjects reported to the Human Performance Laboratory (HPL) on four separate occasions (T1–T4). Maximal strength [one repetition-maximum (1-RM)] testing was performed during T1. During T2 subjects performed four sets of ten repetitions at 80% of their 1-RM in the squat, dead lift and barbell lunge exercises with 90 s of rest between each set. Blood draws occurred at baseline (BL), immediate and 15 min post-exercise to determine testosterone, cortisol and creatine kinase (CK) concentrations. Subjects reported back to the HPL 24 (T3) and 48 h (T4) post-exercise for a BL blood draw and to perform four sets of ten repetitions with 80% of 1-RM for the squat exercise only. No differences in the number of repetitions performed in the squat exercise were seen between the groups at T2. Relative to T2, PL performed significantly (P < 0.05) fewer repetitions than SUP at T3 and T4 (−9.5 ± 5.5 repetitions vs. −3.3 ± 3.6 during T3, respectively, and −10.5 ± 8.2 repetitions vs. −2.3 ± 2.9 repetitions during T4, respectively). No differences in hormonal measures were seen between the groups. CK concentrations were significantly (P < 0.05) elevated at T3 for both groups, but continued to elevate (P < 0.05) at T4 for PL only. No significant group differences were noted for CK at any time point. Results indicate that a proprietary protein SUP consumed before and after a resistance training session significantly contributes to improvements in exercise recovery 24 and 48 h post-exercise.  相似文献   

9.
The effects of exercise on gastric emptying remain controversial, with some workers reporting that heavy exercise inhibits it to varying degrees whereas others report no effects up to an intensity of 70% maximal oxygen consumption (O2max). The state of hydration of the subjects and the environmental conditions may influence the rate of gastric emptying during exercise. To understand further the effects of a 3-h, 16-km walk/run carrying 30 kg of equipment under field conditions at 39°C, we estimated gastric emptying using a [13C]acetate breath test method. Breath samples were collected at intervals after giving 150 mg of [13C]acetate. The effects of giving a standard volume (530 ml) of water or dextrose (7.5 g · 100 ml−1) with electrolytes or fructose/corn solids (7.5 g · 100 ml−1) at rest before exercise were compared with those of exercise and of recovery after exercise with or without extra fluids (400 ml each 20 min). At rest, after a standard 530-ml load, gastric emptying times [mean (SE)] were: 37 (2) min (water), 46 (3) min (dextrose/electrolytes) and 47 (5) min (fructose/corn solids) and were significantly slower (P < 0.05) than those occurring after extra fluid ingestion, i.e. 32 (3), 39 (2) and 41 (3) min respectively. After a standard 530-ml load, emptying times during exercise were almost identical to those at rest but, during exercise, extra fluid speeded up gastric emptying more than at rest to 24 (2), 26 (1) and 27 (5) min (P < 0.05) respectively. During resting recovery without extra fluids, gastric emptying was significantly slowed to 60 (2), 71 (5) and 78 (3) min, respectively. Although emptying times during recovery from exercise with extra fluid were faster [49 (6), 55 (2) and 58 (4) min, respectively], they were still slower than before exercise. The results suggest that: (1) extra fluid increases gastric emptying more during exercise than at rest, and (2) gastric emptying during resting recovery from exercise is slower than at rest before exercise whether or not fluid has previously been taken. Accepted: 17 June 1996  相似文献   

10.
 The present study was undertaken to determine the haematological and cardiovascular status, at rest and during prolonged (1 h) submaximal exercise (approximately 70% of peak oxygen uptake) in a group (n = 12) of chronic coca users after chewing approximately 50 g of coca leaves. The results were compared to those obtained in a group (n = 12) of nonchewers. At rest, coca chewing was accompanied by a significant increase in heart rate [from 60 (SEM 4) TO 76 (SEM 3) beats · min−1], in haematocrit [from 53.2 (SEM 1.2) to 55.6 (SEM 1.1)%] in haemoglobin concentration, and plasma noradrenaline concentration [from 2.8 (SEM 0.4) to 5.0 (SEM 0.5) μmol · l−1]. It was calculated that coca chewing for 1 h resulted in a significant decrease in blood [−4.3 (SEM 2.2)%] and plasma [−8.7 (SEM 1.2)%] volume. During submaximal exercise, coca chewers displayed a significantly higher heart rate and mean arterial blood pressure. The exercise-induced haemoconcentration was blunted in coca chewers compared to nonchewers. It was concluded that the coca-induced fluid shift observed at rest in these coca chewers was not cumulative with that of exercise, and that the hypovolaemia induced by coca chewing at rest compromised circulatory adjustments during exercise. Accepted: 29 October 1996  相似文献   

11.
People adapt to thermal environments, such as the changing seasons, predominantly by controlling the amount of clothing insulation, usually in the form of the clothing that they wear. The aim of this study was to determine the actual daily clothing insulation on sedentary human subjects across the seasons. Thirteen females and seven males participated in experiments from January to December in a thermal chamber. Adjacent months were grouped in pairs to give six environmental conditions: (1) January/February = 5°C; (2) March/April = 14°C; (3) May/June = 25°C; (4) July/August = 29°C; (5) September/October = 23°C; (6) November/December = 8°C. Humidity(45 ± 5%) and air velocity(0.14 ± 0.01 m/s) were constant across all six experimental conditions. Participants put on their own clothing that allowed them to achieve thermal comfort for each air temperature, and sat for 60 min (1Met). The clothing insulation (clo) required by these participants had a significant relationship with air temperature: insulation was reduced as air temperature increased. The range of clothing insulation for each condition was 1.87–3.14 clo at 5°C(Jan/Feb), 1.62–2.63 clo at 14°C(Mar/Apr), 0.87–1.59 clo at 25°C(May/Jun), 0.4–1.01 clo at 29°C(Jul/Aug), 0.92–1.81 clo at 23°C (Sept/Oct), and 2.12–3.09 clo at 8°C(Nov/Dec) for females, and 1.84–2.90 clo at 5°C, 1.52–1.98 clo at 14°C, 1.04–1.23 clo at 25°C, 0.51–1.30 clo at 29°C, 0.82–1.45 clo at 23°C and 1.96–3.53 clo at 8°C for males. The hypothesis was that thermal insulation of free living clothing worn by sedentary Korean people would vary across seasons. For Korean people, a comfortable air temperature with clothing insulation of 1 clo was approximately 27°C. This is greater than the typical comfort temperature for 1 clo. It was also found that women clearly increased their clothing insulation level of their clothing as winter approached but did not decrease it by the same amount when spring came.  相似文献   

12.
The pleiotropic cytokine interleukin-6 (IL-6) has been demonstrated to increase during exercise. Little is known regarding the response of the soluble IL-6 receptors (sIL-6R and sgp130) during such exercise. The aim of the current study was to investigate the response of plasma IL-6, sIL-6R and sgp130 during fatiguing submaximal exercise in humans. Twelve participants underwent an incremental exercise test to exhaustion and one week later performed a submaximal exercise bout (96 ± 6% lactate threshold) to volitional exhaustion. Blood samples taken at rest and immediately post exercise were analyzed for IL-6, sIL-6R and sgp130. IL-6 increased (P < 0.01) by 8.4 ± 8.9 pg ml−1 (75.7%) during the exercise period. sIL-6R and sgp130 also increased (P < 0.05) by 2.7 ± 3.9 ng ml−1 (9.6%) and 37.7 ± 55.6 ng ml−1 (9.6%), respectively. The current study is the first investigation to demonstrate that alongside IL-6, acute exercise stress results in an increase in both sIL-6R and sgp130.  相似文献   

13.
The purpose of this study was to compare the effects of 2 different rest period lengths during a resistance training session with the number of repetitions completed per set of each exercise, the volume completed over 3 sets of each exercise, and the total volume during a training session. Fourteen experienced, weight-trained men volunteered to participate in the study. All subjects completed 2 experimental training sessions. Both sessions consisted of 3 sets of 8 repetitions with an 8 repetition maximum resistance of 6 upper body exercises performed in a set manner (wide grip lat pull-down, close grip pull-down, machine seated row, barbell row lying on a bench, dumbbell seated arm curl, and machine seated arm curl). The 2 experimental sessions differed only in the length of the rest period between sets and exercises: 1 session with a 1-minute and the other with a 3-minute rest period. For all exercises, results demonstrate a significantly lower total number of repetitions for all 3 sets of an exercise when 1-minute rest periods were used (p < or = 0.05). The 3- and 1-minute protocols both resulted in a significant decrease from set 1 to set 3 in 4 of the 6 exercises (p < or = 0.05), whereas the 1-minute protocol also demonstrated a significant decrease from set 1 to set 2 in 2 of the 6 exercises (p < or = 0.05). The results indicate that, during a resistance training session composed of all upper body exercises, 1-minute rest periods result in a decrease in the total number of repetitions performed compared with 3-minute rest periods between sets and exercises.  相似文献   

14.
The present study was undertaken to determine the effects of endurance training on glycogen kinetics during exercise. A new model describing glycogen kinetics was applied to quantitate the rates of synthesis and degradation of glycogen. Trained and untrained rats were infused with a 25% glucose solution with 6-3H-glucose and U-14C-lactate at 1.5 and 0.5 μCi · min−1 (where 1 Ci = 3.7 × 1010 Bq), respectively, during rest (30 min) and exercise (60 min). Blood samples were taken at 10-min intervals starting just prior to isotopic infusion, until the cessation of exercise. Tissues harvested after the cessation of exercise were muscle (soleus, deep, and superficial vastus lateralis, gastrocnemius), liver, and heart. Tissue glycogen was quantitated and analyzed for incorporation of 3H and 14C via liquid scintillation counting. There were no net decreases in muscle glycogen concentration from trained rats, whereas muscle glycogen concentration decreased to as much as 64% (P < 0.05) in soleus in muscles from untrained rats after exercise. Liver glycogen decreased in both trained (30%) and untrained (40%) rats. Glycogen specific activity increased in all tissues after exercise indicating isotope incorporation and, thus, glycogen synthesis during exercise. There were no differences in muscle glycogen synthesis rates between trained and untrained rats after exercise. However, training decreased muscle glycogen degradation rates in total muscle (i.e., the sum of the degradation rates of all of the muscles sampled) tenfold (P < 0.05). We have applied a model to describe glycogen kinetics in relation to glucose and lactate metabolism during exercise in trained and untrained rats. Training significantly decreases muscle glycogen degradation rates during exercise. Accepted: 22 May 1998  相似文献   

15.
Heart rate (HR) monitoring is commonly used to assess 24-h energy expenditure (EE) in children but it has been found to overestimate the true values. One reason for this may be the effect of climatic heat stress on HR. An equation has been previously developed to adjust HR measured during continuous exercise for the influence of climate. Since play in children is rarely of a continuous pattern, one objective of this study was to compare the effects of climatic heat stress on the HR response to intermittent and to continuous exercise. A second objective was to determine whether the previously developed equation is suitable for intermittent exercise. A group of 12 boys and 8 girls (aged 8–11 years) cycled in a climatic chamber. The exercise consisted of continuous cycling for 5 min at 35%, 55%, and 75% of peak oxygen up take (random order) followed by alternating cycling at the same resistance and cadence (30 s) and rest (30 s) for 3 additional min. The oxygen uptake (O2) and HR were determined for 2 min at the end of continuous cycling and for 2 min during intermittent cycling. Climatic conditions (randomly assigned) were dry bulb temperature T db 22°C, 50% relative humidity (rh); T db 28°C, 55% rh; T db 32°C, 52% rh; or T db 35°C, 58% rh. The difference between HR measured at a given T db (HRmeas) and HR at 22°C and at the same O2 was then calculated (ΔHR). The ΔHR increased linearly with increasing temperature but was not related to O2 or to exercise type. However, a small but significant difference was found if the published equation was used with data from intermittent exercise. The accuracy of the existing equation adjusting HRmeas for the influence of T db (HRcorr) could be improved to HRcorr= HRmeas · (1.18308−(0.0083218 · T db)). In conclusion, the effects of climatic heat stress on HR were similar in continuous and intermittent exercise, and HR can be adjusted for the influence of climate in groups of pre- and early pubertal children during rest, intermittent and continuous exercise at ambient temperatures between 22°C and 35°C, thereby reducing the error in predicting EE from HR. Accepted: 13 January 1998  相似文献   

16.
The effects of hydromineral hormones and catecholamines on renal concentrating ability at different hydration states were examined in five male volunteers while they performed three trials. Each of these trials comprised a 60-min exercise bout on a treadmill (at 50% of maximal oxygen uptake) in a warm environment (dry bulb temperature, 35°C; relative humidity, 20–30%). In one session, subjects were euhydrated before exercise (C). In the two other sessions, after thermal dehydration (loss of 3% body mass) which markedly reduced plasma volume (PV) and increased plasma osmolality (osmpl), the subjects exercised either not rehydrated (Dh) or rehydrated (Rh) by drinking 600 ml of mineral water before and 40 min after the onset of exercise. During exercise in the Dh compared to C state, plasma renin, aldosterone, arginine vasopressin (AVP), noradrenaline and adrenaline concentrations were increased (P < 0.05). A reduction in creatinine clearance and urine flow was also observed (P < 0.05) together with a decrease in urine osmolality, osmolar clearance and sodium excretion, while free water clearance increased (P < 0.05). However, compared to Dh, Rh partially restored PV and osmpl and induced a marked reduction in the time courses of both the plasma AVP and catecholamine responses (P < 0.05). Values for renal water and electrolyte excretion were intermediate between those of Dh and C. Plasma atrial natriuretic peptide presented similar changes whatever the hydration state. These results demonstrate that during moderate exercise in the heat, renal concentrating ability is paradoxically reduced by prior dehydration in spite of high plasma AVP levels, and might be the result of marked activation of the sympatho-adrenal system. Rehydration, by reducing this activation, could partially restore the renal concentrating ability despite the lowered plasma AVP. Accepted: 23 April 1997  相似文献   

17.
The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery atT a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.  相似文献   

18.
This study was performed to determine how the calcium supplementation for a 4-week period affects the glucose and insulin levels at rest and at exhaustion in athletes. This is a 4-week study performed on 30 healthy subjects varying between 18 and 22 ages. Subjects were separated into three groups: first group (group supplemented with calcium, sedentary group), second group (calcium supplementations + exercise group), and third group (training group). Glucose and insulin parameters of the groups were measured four times, at rest and exhaustion in the beginning of the research and at rest and exhaustion after the end of 4 weeks application period. Exhaustion measurements both before and after the supplementations significantly decreased in compared to rest measurements in terms of insulin (p < 0.05). Significant difference was not determined in the glucose values of groups. In terms of glucose, values increased in all of the three groups occurred with exercise both before and after the supplementation by exercise and exhaustion (p < 0.05). The results of our study indicate that calcium gluconate supplementations for 4 weeks in sedentary subjects and athletes did not significantly affect plasma insulin levels at rest and exhaustion. However, glucose levels were affected by calcium supplementation and exhausting exercise in athletes.  相似文献   

19.
The purpose of this study was to investigate the alterations in serum heat shock protein (Hsp) 70 levels during a 15-consecutive-day intermittent heat–exercise protocol in a 29-year-old male ultra marathon runner. Heat acclimation, for the purpose of physical activities in elevated ambient temperatures, has numerous physiological benefits including mechanisms such as improved cardiac output, increased plasma volume and a decreased core temperature (T c). In addition to the central adaptations, the role of Hsp during heat acclimation has received an increasing amount of attention. The acclimation protocol applied was designed to correspond with the athlete’s tapering period for the 2007 Marathon Des Sables. The subject (VO2max = 50.7 ml·kg−1·min−1, peak power output [PPO] = 376 W) cycled daily for 90 min at a workload corresponding to 50% of VO2max in a temperature-controlled room (average WBGT = 31.9 ± 0.9°C). Venous blood was sampled before and after each session for measurement of serum osmolality and serum Hsp70. In addition, T c, heart rate (HR) and power output (PO) was measured throughout the 90 min to ensure that heat acclimation was achieved during the 15-day period. The results show that the subject was successfully heat acclimated as seen by the lowered HR at rest and during exercise, decreased resting and exercising T c and an increased PO. The heat exercise resulted in an initial increase in Hsp70 concentrations, known as thermotolerance, and the increase in Hsp70 after exercise was inversely correlated to the resting values of Hsp70 (Spearman’s rank correlation = −0.81, p < 0.01). Furthermore, the 15-day heat–exercise protocol also increased the basal levels of Hsp70, a response different from that of thermotolerance. This is, as far as we are aware, the first report showing Hsp70 levels during consecutive days of intermittent heat exposure giving rise to heat acclimation. In conclusion, a relatively longer heat acclimation protocol is suggested to obtain maximum benefit of heat acclimation inclusive of both cellular and systemic adaptations.  相似文献   

20.
Increase in heart metabolism during severe exercise facilitates production of ROS and result in oxidative stress. Due to shortage of information, the effect of chronic strength exercise on oxidative stress and contractile function of the heart was assessed to explore the threshold for oxidative stress in this kind of exercise training. Male Wistar rats (80) were divided into two test groups exercised 1 and 3 months and two control groups without exercise. Strength exercise was carried by wearing a Canvas Jacket with weights and forced rats to lift the weights. Rats were exercised at 70% of maximum lifted weight 6 days/week, four times/day, and 12 repetitions each time. Finally, the hearts of ten rats/group were homogenized and MDA, SOD, GPX, and catalase (CAT) were determined by ELISA method. In other ten rats/group, left ventricle systolic and end diastolic pressures (LVSP and LVEDP) and contractility indices (LVDP and +dp/dt max) and relaxation velocity (−dp/dt max) were recorded. The coronary outflow was collected. Short- and long-term strength exercise increased heart weight and heart/BW ratio (P < 0.05). In the 3-month exercise group, basal heart rate decreased (P < 0.05). LVEDP did not change but LVDP, +dp/dt max, −dp/dt max, and coronary flow significantly increased in both exercise groups (P < 0.05). None of MDA or SOD, GPX, and CAT significantly changed. The results showed that sub-maximal chronic strength exercise improves heart efficiency without increase in oxidative stress index or decrease in antioxidant defense capacity. These imply that long-time strength exercise up to this intensity is safe for cardiac health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号