首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
PurposeEvidence from in vivo studies suggests there are enhanced radiation effects in abscopal regions after local head gamma ray irradiation. Splenocyte apoptosis and T lymphocyte micronuclei were induced at higher rates than what would be estimated given the dose at a shielded, distant position. In addition, we evaluated the radio-protective effects of ascorbic acid, acting as a radical scavenger on enhanced radiation effects in the shielded spleen following local head irradiation.Methods and materialsThe heads of C3H mice were exposed to γ-rays (10–20 Gy), while the other parts of the body were shielded with a 5 cm-thick lead block. The effective dose for the spleen was calculated at 1.0–2.0 Gy. Splenocytes were isolated 24 h after cranial irradiation and their apoptosis was measured with an Elisa kit (Roche). The induction of T lymphocyte micronuclei was studied using the cytokinesis-block micronucleus assay. The ascorbic acid glucoside, 2-O-alpha-d-glucopyranosyl-l-ascorbic acid (AA-2G), was orally administered to mice 1 h before whole body irradiation. The radio protective effects of AA-2G were estimated by comparing the induction of splenocyte damage (by apoptosis) and micronucleus induction.ResultsThe splenocyte damage, as measured by the above two methods, was more excessive than what would be expected given exposure to 1.0–2.0 Gy of radiation. Our results suggest that the effects were enhanced in a distant, non-irradiated organ after localized irradiation. Plasma ascorbic acid concentrations were increased 8–10× over control. Treatment with ascorbic acid slightly protected mouse splenocytes from the induction of apoptosis by the enhanced effects of radiation in the abscopal region. However, ascorbic acid significantly inhibited micronucleus induction in splenic T lymphocytes following local head irradiation.ConclusionsOur results suggest that ascorbic acid effectively scavenged radiation-induced radicals and protected against the enhanced effects of radiation in an abscopal region after local head gamma ray irradiation.  相似文献   

2.
Carbon irradiation due to its higher biological effectiveness relative to photon radiation is a concern for toxicity to proliferative normal gastrointestinal (GI) tissue after radiotherapy and long-duration space missions such as mission to Mars. Although radiation-induced oxidative stress is linked to chronic diseases such as cancer, effects of carbon irradiation on normal GI tissue have not been fully understood. This study assessed and compared chronic oxidative stress in mouse intestine and colon after different doses of carbon and γ radiation, which are qualitatively different. Mice (C57BL/6J) were exposed to 0.5 or 1.3?Gy of γ or carbon irradiation, and intestinal and colonic tissues were collected 2 months after irradiation. While part of the tissues was used for isolating epithelial cells, tissue samples were also fixed and paraffin embedded for 4 µm thick sections as well as frozen for biochemical assays. In isolated epithelial cells, reactive oxygen species and mitochondrial status were studied using fluorescent probes and flow cytometry. We assessed antioxidant enzymes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in tissues and formalin-fixed tissue sections were stained for 4-hydroxynonenal, a lipid peroxidation marker. Data show that mitochondrial deregulation, increased NADPH oxidase activity, and decreased antioxidant activity were major contributors to carbon radiation-induced oxidative stress in mouse intestinal and colonic cells. When considered along with higher lipid peroxidation after carbon irradiation relative to γ-rays, our data have implications for functional changes in intestine and carcinogenesis in colon after carbon radiotherapy as well as space travel.  相似文献   

3.
4.
Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET) radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks) were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) two months after 2 Gy γ radiation and results were compared to an equitoxic 56Fe (1.6 Gy) radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the 56Fe radiation preferentially altered dipeptide metabolism. Furthermore, 56Fe radiation caused upregulation of ‘prostanoid biosynthesis’ and ‘eicosanoid signaling’, which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but also as a radiation-risk assessment tool for intestinal pathologies through identification of biomarkers persisting long after exposure.  相似文献   

5.
Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light.  相似文献   

6.
The late effects of variable doses of abdominal irradiation on in vitro jejunal uptake were examined. The uptake of glucose, galactose, cholic acid, medium-chain length fatty acids, and decanol was studied 6 and 33 weeks following 300, 600, or 900 cGy abdominal irradiation. The intestinal morphological characteristics were similar 6 and 33 weeks after radiation. The uptake of cholic acid was unaffected by abdominal irradiation, but for glucose, galactose, and four fatty acids the direction and magnitude of the changes in uptake were influenced by the dose of irradiation and by the interval following exposure. The greater uptake of decanol at 6 weeks but lower uptake of decanol at 33 weeks reflected changes in the resistance of the intestinal unstirred water layer. These absorption changes suggest that the intestine may not be capable of correcting the transport abnormalities arising from sublethal doses of abdominal irradiation.  相似文献   

7.
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.  相似文献   

8.
This study evaluated the protective effects of Lactobacillus plantarum CCFM8610, a selected probiotic with good cadmium binding capacity, against acute cadmium toxicity in mice. Ninety mice were divided into prevention and therapy groups. In the prevention groups, CCFM8610 was administered at 109 CFU once daily for 7 days, followed by a single oral dose of cadmium chloride at 1.8 mg cadmium for each mouse. In the therapy groups, the same dose of CCFM8610 was administered for 2 days after an identical single dose of cadmium exposure. Mice that received neither cadmium nor culture or that received cadmium alone served as negative and positive controls, respectively. The effects of both living and dead CCFM8610 on cadmium ion concentrations in feces, liver, and kidney were determined. Moreover, the alterations in reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and histopathology in the liver and kidney were investigated. The results showed that compared to the mice that received cadmium only, CCFM8610 treatment can effectively decrease intestinal cadmium absorption, reduce tissue cadmium accumulation, alleviate renal and hepatic oxidative stress, and ameliorate hepatic histopathological changes. Living CCFM8610 administered after cadmium exposure offered the most significant protection. Our results suggested that CCFM8610 is more effective against acute cadmium toxicity than a simple antioxidant treatment due to its special physiological functions and that it can be considered a new dietary therapeutic strategy against acute cadmium toxicity.  相似文献   

9.
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams (“proton microchannels”) are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy.  相似文献   

10.
We observed clinical and histological changes, including increased transepidermal water loss, epidermal thickness, and inflammatory cells, and changes in collagen fibers in the skin of mice chronically exposed to ultraviolet (UV) B radiation for 12 weeks. By using ultra-performance liquid chromatography-quadrupole time-of-flight (TOF) mass spectrometry (MS), gas chromatography (TOF–MS), and NanoMate tandem-MS-based metabolite profiling, we identified amino acids, organic compounds, fatty acids, lipids, nucleosides, carbohydrates, lysophosphatidylcholines, lysophosphatidylethanolamines, urocanic acids, and ceramides (CERs) as candidate biomarkers of the histological changes in mouse skin following UVB irradiation for 6 and 12 weeks. cis-Urocanic acid and cholesterol showed the most dramatic increase and decrease at 6 and 12 weeks, respectively. In addition, the changes in skin primary metabolites and lysophospholipids induced by UVB exposure were generally greater at 12 weeks than at 6 weeks. The results from primary metabolite, lysophospholipid, and CER profiles suggest that prolonged chronic exposure to UVB light has a great effect on skin by altering numerous metabolites. A comprehensive MS-based metabolomic approach for determining regulatory metabolites in UV-induced skin will lead to a better understanding of the relationship between skin and UV.  相似文献   

11.
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure.  相似文献   

12.
Cell killing and mutation to 6-thioguanine resistance were studied in growing mouse leukemia cells in culture after exposure to tritiated amino acids and tritiated thymidine. These effects varied widely among the tritiated compounds tested, being greatest for tritiated thymidine followed by tritiated arginine and tritiated lysine, in that order, for a given concentration of 3H expressed in kBq/ml of 3H in the medium. The differences between each tritiated amino acid disappeared almost totally when the effects were compared on the basis of the absorbed dose to the cells. The effects of tritiated thymidine, however, remained more than twofold greater compared to other tritiated compounds. These results indicate the importance of determining the absorbed dose for assessment of the radiotoxicity of tritiated organic compounds. For an exceptional case (tritiated thymidine), contribution of a mechanism(s) other than beta irradiation should also be taken into account.  相似文献   

13.
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to (56)Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/μm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET (56)Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in (56)Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after (56)Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.  相似文献   

14.
Effects of ambient solar UV radiation in the field and of artifical UV irradiation under controlled laboratory conditions were studied with natural phytoplankton populations from Helgoland, German Bight, North Sea. The pattern of pigments varied after UV-A or UV-B plus a low dose of UV-A radiation: UV-A usually induced a stimulation of pigment biosynthesis; whereas UV-B plus UV-A led to a reduction of the contents of chlorophyll a, diadinoxanthin, fucoxanthin, peridinin and an unknown carotenoid; content of diatoxanthin was significantly enhanced. The damaging effect on nitrogen assimilation by UV was more pronounced after artificial UV-B plus UV-A irradiance compared to the influence of ambient solar UV under field conditions. The uptake of inorganic nitrogen was dependent on the dose and exposure time of UV radiation as well as on the species composition. The uptake of 15N-nitrate by natural phytoplankton collected in spring was more sensitive to UV irradiation than the assimilation of 15N-ammonium. UV-A radiation with a small part of shorter wavelengths at 315 nm (Philips-lamps in conjunction with the cut-off filter WG 320) caused a reduction of up to 12% whereas a stimulation of the 15NH4+ uptake was observed after exposure to UV-A without any UV-B (Philips lamps TL 60W/09N). Pattern of 15N-incorporation into free amino acids and pool sizes varied in dependence on the applied nitrogen compound and on the irradiation conditions. The impact of UV radiation on the pattern of 15N-Iabelled free amino acids and the pool sizes was different. 15N enrichment into all the tested amino acids was reduced after 5 h UV-B plus UV-A exposure and after application of 15NH4+. A depression of the glutamate and glutamine pools was observed after addition of 15N-nitrate alone. Pools of all main amino acids from phytoplankton in summer 1993/94 were inhibited by UV irradiance. Results are discussed with reference to the UV target (e.g. enzymes, pigments) and the adaptation to the environmental conditions.  相似文献   

15.

Background

Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.

Methods

Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.

Results

Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine).

Conclusions

We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.  相似文献   

16.
Radiation exposure can increase the risk for many non-malignant physiological complications, including cardiovascular disease. We have previously demonstrated that ionizing radiation can induce endothelial dysfunction, which contributes to increased vascular stiffness. In this study, we demonstrate that gamma radiation exposure reduced endothelial cell viability or proliferative capacity using an in vitro aortic angiogenesis assay. Segments of mouse aorta were embedded in a Matrigel-media matrix 1 day after mice received whole-body gamma irradiation between 0 and 20 Gy. Using three-dimensional phase contrast microscopy, we quantified cellular outgrowth from the aorta. Through fluorescent imaging of embedded aortas from Tie2GFP transgenic mice, we determined that the cellular outgrowth is primarily of endothelial cell origin. Significantly less endothelial cell outgrowth was observed in aortas of mice receiving radiation of 5, 10, and 20 Gy radiation, suggesting radiation-induced endothelial injury. Following 0.5 and 1 Gy doses of whole-body irradiation, reduced outgrowth was still detected. Furthermore, outgrowth was not affected by the location of the aortic segments excised along the descending aorta. In conclusion, a single exposure to gamma radiation significantly reduces endothelial cell outgrowth in a dose-dependent manner. Consequently, radiation exposure may inhibit re-endothelialization or angiogenesis after a vascular injury, which would impede vascular recovery.  相似文献   

17.
The purpose of this study was to further elucidate the radioprotective role of granulocyte colony-stimulating factor (G-CSF) induced in response to irradiation. The induction of G-CSF and interleukin-6 (IL-6) in response to radiation exposure was evaluated in mice. The level of cytokine in serum was determined by multiplex Luminex. The role of G-CSF on survival and tissue injury after total body gamma-irradiation was evaluated by administration of neutralizing antibody to G-CSF before radiation exposure. An isotype control was used for comparison and survival was monitored for 30 d after irradiation. Jejunum samples were used for immunohistochemistry. Ionizing radiation exposure induced significant levels of the hematopoietic cytokines G-CSF and IL-6, in mice receiving 9.2 Gy radiation. Maximal levels of G-CSF were observed in peripheral blood of mice 8h after irradiation. IL-6 levels were maximum at 12h after irradiation. Administration of G-CSF antibody significantly enhanced mortality in irradiated mice. G-CSF antibody-treated mice had higher numbers of CD68(+) cells and apoptotic cells in intestinal villi. Our results confirm that radiation exposure induces elevations of circulating G-CSF and IL-6. Neutralizing antibody to G-CSF exacerbates the deleterious effects of radiation, indicating that G-CSF induced in response to irradiation plays an important role in recovery.  相似文献   

18.
This work evaluates the possible changes in 24 h variations of striatal aspartate, glutamate, glutamine, gamma-aminobutyric acid (GABA) and taurine content after oral cadmium treatment. Male rats were submitted to cadmium exposure at two doses (25 and 50 mg/L of cadmium chloride (CdCl2)) in the drinking water for 30 days. Control rats received cadmium-free water. After the treatment, rats were killed at six different time intervals throughout a 24 h cycle. Differential effects of cadmium on 24 h amino acid fluctuations were observed. Metal exposure modified the daily pattern of the amino acids concentration found in control animals, except for GABA and taurine with the lowest dose used. Exposure to 25 mg/L of CdCl2 decreased mean content of aspartate, as well as GABA concentration. These results suggest that cadmium exposure affects 24 h changes of the studied amino acids concentration in the striatum, and those changes may be related to alterations in striatal function.  相似文献   

19.
本研究以赤子爱胜蚓为受试生物,采用外源添加污染物的方法,将受试生物暴露于含亚致死剂量乙草胺(添加浓度分别为1、2、4、8 mg·kg-1)的土壤中7 d,研究蚯蚓生长抑制率、细胞色素P450同工酶(CYP1A2、2C9和3A4)活力及代谢组学对乙草胺的响应,从个体、酶、小分子标记物3个层次探讨亚致死剂量乙草胺对蚯蚓的毒性效应,初步推断其毒性作用阈值,筛选敏感生物标记物,探讨其致毒机理。结果表明: 乙草胺暴露下,与对照相比,蚯蚓体重抑制率无明显差异,但CYP1A2、2C9和3A4活力受到明显抑制,10组小分子代谢物(1, 6-二磷酸果糖、胞苷酸、尿苷酸、腺苷酸、腺苷、黄嘌呤、延胡索酸、二羟基戊二酸、鸟氨酸与16-羟二十烷四烯酸)水平显著降低;另有6组小分子代谢物(腺苷琥珀酸、琥珀酸、精氨酸、色氨酸、天冬酰胺与苯丙氨酸)水平在2~8 mg·kg-1乙草胺暴露下显著升高。乙草胺暴露导致蚯蚓受到氧化损伤,糖酵解功能减弱,三羧酸循环失衡,嘌呤及嘧啶代谢紊乱,氨基酸代谢受损。与个体水平的受试终点相比,CYP同工酶活力与上述16个小分子代谢物对乙草胺暴露的响应更为敏感。建议将CYP同工酶(1A2、2C9及3A4)活力与上述小分子代谢物为一组生物标记物,可以多指标、多层次联合诊断土壤乙草胺污染的生态毒性效应。其诊断结果将更为精准。  相似文献   

20.
Acrylamide (AA) is known to cause neurotoxicity, genotoxicity, reproductive, and carcinogenic effects in rodents and neurotoxicity in humans. A metabolomics study of urine samples from rats dosed with acrylamide for 14 days was undertaken to understand the mechanisms of and develop biomarkers for acrylamide-induced toxicity. NMR-based and LC/MS-based metabolomics methods were used to analyze metabolites in urine samples. Three mercapturic acid conjugates of acrylamide were detected using exact mass and principal component analysis (PCA) of urine samples. NMR analysis showed an increase in creatine and a decrease in taurine throughout the dosing period. Results showed that citric acid cycle metabolites were down-regulated later in the dosing period. Further, many amino acids were also up-regulated during the study and may be related to the weight loss observed in this study. Taken together, the data suggest that both LC/MS-based and NMR-based metabolomics analysis can detect changes in endogenous metabolites related to glutathione, TCA cycle, and amino acid metabolism induced by AA administration over a 2 week dosing period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号