首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adipose tissue is a critical regulator of energy balance and substrate metabolism, and synthesizes several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. An excessive amount of adipose tissue has been associated with the development of type 2 diabetes, premature atherosclerosis, and cardiovascular disease. It is believed that the adverse metabolic impact of visceral fat relies on a relative resistance to the action of insulin in this depot compared to other adipose tissue depots. However, information on insulin signalling reactions in human fat is limited. In this paper, we review the major insulin signalling pathways in adipocytes and their relevance for metabolic regulation, and discuss recent data indicating different signalling properties of visceral fat as compared to other fat depots, which may explain the metabolic and hormonal specificity of this fat tissue depot in humans.  相似文献   

2.
Autotaxin (ATX) is a lysophospholipase D involved in synthesis of a bioactive mediator: lysophosphatidic. ATX is abundantly produced by adipocytes and exerts a negative action on adipose tissue expansion. In both mice and humans, ATX expression increases with obesity in association with insulin resistance. In the present study, fat depot-specific regulation of ATX was explored in human. ATX mRNA expression was quantified in visceral and subcutaneous adipose tissue in obese (BMI?>?40?kg/m2; n?=?27) and non-obese patients (BMI?<?25?kg/m2; n?=?10). Whatever the weight status of the patients is, ATX expression was always higher (1.3- to 6-fold) in subcutaneous than in visceral fat. Nevertheless, visceral fat ATX was significantly higher (42?%) in obese than in non-obese patients, whereas subcutaneous fat ATX remained unchanged. In obese patients, visceral fat ATX expression was positively correlated with diastolic arterial blood pressure (r?=?0.67; P?=?0.001). This correlation was not observed with subcutaneous fat ATX. Visceral fat ATX was mainly correlated with leptin (r?=?0.60; P?=?0.001), inducible nitric oxide synthase (r?=?0.58; P?=?0,007), and apelin receptor (r?=?0.50; P?=?0.007). These correlations were not observed with subcutaneous fat ATX. These results reveal that obesity-associated upregulation of human adipose tissue ATX is specific to the visceral fat depot.  相似文献   

3.
4.
Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue‐specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) in fat and liver of ovariectomized female rats treated with or without 17β‐estradiol. 11βHSD1 converts inert cortisone, or 11‐dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol‐treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P < 0.01); subcutaneous adipose weight was unaltered. In addition, 11βHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol‐treated rats (P < 0.001 for both). This downregulation altered the balance of 11βHSD1 expression and activity between adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol‐treated animals (P < 0.05 for both), opposite the pattern in ovariectomized rats not treated with estradiol (P < 0.001 for mRNA expression). Thus, estrogen modulates fat distribution, at least in part, through effects on tissue‐specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.  相似文献   

5.
Objective: Our main objective was to compare the regulation of cortisol production within omental (Om) and abdominal subcutaneous (Abd sc) human adipose tissue. Methods and Procedures: Om and Abd sc adipose tissue were obtained at surgery from subjects with a wide range of BMI. Hydroxysteroid dehydrogenase (HSD) activity (3H‐cortisone and 3H‐cortisol interconversion) and expression were measured before and after organ culture with insulin and/or dexamethasone. Results: Type 1 HSD (HSD1) mRNA and reductase activity were mainly expressed within adipocytes and tightly correlated with adipocyte size within both depots. There was no depot difference in HSD1 expression or reductase activity, while cortisol inactivation and HSD2 mRNA expression (expressed in stromal cells) were higher in Om suggesting higher cortisol turnover in this depot. Culture with insulin decreased HSD reductase activity in both depots. Culture with dexamethasone plus insulin compared to insulin alone increased HSD reductase activity only in the Om depot. This depot‐specific increase in reductase activity could not be explained by an alteration in HSD1 mRNA or protein, which was paradoxically decreased. However, in Om only, hexose‐6‐phosphate dehydrogenase (H6PDH) mRNA levels were increased by culture with dexamethasone plus insulin compared to insulin alone, suggesting that higher nicotinamide adenine dinucleotide phosphate‐oxidase (NADPH) production within the endoplasmic reticulum (ER) contributed to the higher HSD reductase activity. Discussion: We conclude that in the presence of insulin, glucocorticoids cause a depot‐specific increase in the activation of cortisone within Om adipose tissue, and that this mechanism may contribute to adipocyte hypertrophy and visceral obesity.  相似文献   

6.
During the finishing phase of bovines, large amounts of subcutaneous and visceral fats are deposited leading to production inefficiencies with major impact on meat quality. A better understanding of the cellularity features of the main fat depots could provide strategies for adipose tissue manipulation. This study assessed the effect of feeding diets with distinct forage to concentrate ratios on the cellularity of two fat depots of beef cattle and their implications on the fatty acid profile. Thus, two phylogenetically distant Portuguese bovine breeds, Alentejana and Barrosã, were selected. The results did not show differences in subcutaneous fat deposition nor in visceral fat depots partitioning. Plasma adipokines concentration failed to show a consistent relationship with fatness, as leptin remained constant in all experimental groups, whereas interleukin-6 was influenced by breed. Fat depot seems to determine the area and number of adipocytes, with larger adipocytes and a lower number of cells in subcutaneous fat than in mesenteric fat. Neither breed nor diet influenced adipocytes area and number. The contents of total fatty acids, partial sums of fatty acids and conjugated linoleic acid isomeric profile were affected by breed and fat depot. The incorporation of saturated fatty acids (SFA), trans fatty acids, polyunsaturated fatty acids (PUFA) and branched chain fatty acids (BCFA) was higher in mesenteric fat depot, whereas subcutaneous fat depot had greater percentages of monounsaturated fatty acids (MUFA). In addition, SFA and MUFA proportions seem to be breed-related. In spite of the less relevant role of diet, the percentages of PUFA and BCFA were influenced by this factor. Under these experimental conditions, the effect of fat depot on cellularity and fatty acid composition prevails over breed or diet, as reinforced by the principal component analysis.  相似文献   

7.
The development of metabolic complications of obesity has been associated with the existence of depot-specific differences in the biochemical properties of adipocytes. The aim of this study was to investigate, in severely obese men and women, both gender- and depot-related differences in lipoprotein lipase (LPL) expression and activity, as well as the involvement of endocrine and biometric factors and their dependence on gender and/or fat depot. Morbidly obese, nondiabetic, subjects (9 men and 22 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m(2) who had undergone abdominal surgery were studied. Both expression and activity of LPL and leptin expression were determined in adipose samples from subcutaneous and visceral fat depots. In both men and women, visceral fat showed higher LPL mRNA levels as well as lower ob mRNA levels and tissue leptin content than the subcutaneous one. In both subcutaneous and visceral adipose depots, women exhibited higher protein content, decreased fat cell size and lower LPL activity than men. The gender-related differences found in abdominal fat LPL activity could contribute to the increased risk for developing obesity-associated diseases shown by men, even in morbid obesity, in which the massive fat accumulation could mask these differences. Furthermore, the leptin content of fat depots as well as plasma insulin concentrations appear in our population as the main determinants of adipose tissue LPL activity, adjusted by gender, depot and BMI.  相似文献   

8.
Inflammation and infiltration of immune cells in white adipose tissue have been implicated in the development of obesity-associated insulin resistance. Likewise, dysregulation of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been proposed as a pathogenetic factor for these abnormalities based on both its links to insulin action and its anti-inflammatory effects. In this study, we examined the relationships between AMPK activity, the expression of multiple inflammatory markers in visceral (mesenteric and omental) and abdominal subcutaneous adipose tissue, and whole-body insulin sensitivity in morbidly obese patients (BMI 48 ± 1.9 kg/m2) undergoing gastric bypass surgery. AMPK activity was assessed by Western-blots (P-AMPK/T-AMPK) and mRNA levels of various markers of inflammation by qRT-PCR. Patients were stratified as insulin sensitive obese or insulin-resistant obese according to their HOMA-IR values. The results indicate that AMPK activity is lower in visceral than in subcutaneous abdominal adipose tissue of these patients and that this is associated with an increased expression of multiple inflammatory genes. They also revealed that AMPK activity is lower in adipose tissue of obese patients who are insulin resistant (HOMA-IR > 2.3) than in BMI-matched insulin sensitive subjects. Furthermore, this difference was evident in all three fat depots. In conclusion, the data suggest that there are close links between reduced AMPK activity and inflammation in white adipose tissue, and whole-body insulin resistance in obese humans. Whether adipose tissue AMPK dysregulation is a causal factor for the development of the inflammation and insulin resistance remains to be determined.  相似文献   

9.
Obesity, insulin resistance and the metabolic syndrome, are characterized by expansion and inflammation of adipose tissue, including the depots surrounding the heart and the blood vessels. Epicardial adipose tissue (EAT) is a visceral thoracic fat depot located along the large coronary arteries and on the surface of the ventricles and the apex of the heart, whereas perivascular adipose tissue (PVAT) surrounds the arteries. Both fat depots are not separated by a fascia from the underlying tissue. Therefore, factors secreted from epicardial and PVAT, like free fatty acids and adipokines, can directly affect the function of the heart and blood vessels. In this review, we describe the alterations found in EAT and PVAT in pathological states like obesity, type 2 diabetes, the metabolic syndrome and coronary artery disease. Furthermore, we discuss how changes in adipokine expression and secretion associated with these pathological states could contribute to the pathogenesis of cardiac contractile and vascular dysfunction.  相似文献   

10.
11.
Visceral obesity is linked to insulin resistance and cardiovascular disease. A recent genetic study indicated that the gene locus for the anti-oxidant defense enzyme methionine sulphoxide reductase A (MsrA) is positively associated with the development of visceral adiposity. This work tested the hypothesis that Msr activity is diminished in visceral fat as a result of obesity. It used two animal models of obesity, wild-type rats fed a high-fat (45% of calories from fat) diet and Zucker rats fed a 10% fat calorie diet. The data indicate that MsrA activity was selectively reduced by ~ 25% in the visceral adipose, but not subcutaneous adipose or liver, of both rat models as compared to control, wild type rats receiving a 10% fat calorie diet. MsrB activity was similarly reduced only in visceral fat. The data indicate that Msr activity is reduced by obesity and may alter oxidative stress signalling of obesity.  相似文献   

12.
13.
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists improve insulin sensitivity and lipemia partly through enhancing adipose tissue proliferation and capacity for lipid retention. The agonists also reduce local adipose glucocorticoid production, which may in turn contribute to their metabolic actions. This study assessed the effects of a PPARgamma agonist in the absence of glucocorticoids (adrenalectomy, ADX). Intact, ADX, and intact pair-fed (PF) rats were treated with the PPARgamma agonist rosiglitazone (RSG) for 2 wk. RSG increased inguinal (subcutaneous) white (50%) and brown adipose tissue (6-fold) weight but not that of retroperitoneal (visceral) white adipose tissue. ADX but not PF reduced fat accretion in both inguinal and retroperitoneal adipose depots but did not affect brown adipose mass. RSG no longer increased inguinal weight in ADX and PF rats but increased brown adipose mass, albeit less so than in intact rats. RSG increased cell proliferation in white (3-fold) and brown adipose tissue (6-fold), as assessed microscopically and by total DNA, an effect that was attenuated but not abrogated by ADX. RSG reduced the expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in all adipose depots. RSG improved insulin sensitivity (reduction in fasting insulin and homeostasis model assessment of insulin resistance, both -50%) and triacylglycerolemia (-75%) regardless of the glucocorticoid status, these effects being fully additive to those of ADX and PF. In conclusion, RSG partially retained its ability to induce white and brown adipose cell proliferation and brown adipose fat accretion and further improved insulin sensitivity and lipemia in ADX rats, such effects being therefore independent from the PPARgamma-mediated modulation of glucocorticoids.  相似文献   

14.
As a part of aging there are known to be numerous alterations which occur in multiple tissues of the body, and the focus of this study was to determine the extent to which oxidative stress and hypoxia occur during adipose tissue aging. In our studies we demonstrate for the first time that aging is associated with both hypoxia (38% reduction in oxygen levels, Po(2) 21.7 mmHg) and increases reactive oxygen species in visceral fat depots of aging male C57Bl/6 mice. Interestingly, aging visceral fat depots were observed to have significantly less change in the expression of genes involved in redox regulation compared with aging subcutaneous fat tissue. Exposure of 3T3-L1 adipocytes to the levels of hypoxia observed in aging adipose tissue was sufficient to alter multiple aspects of adipose biology inducing increased levels of in insulin-stimulated glucose uptake and decreased lipid content. Taken together, these data demonstrate that hypoxia and increased levels of reactive oxygen species occur in aging adipose tissue, highlighting the potential for these two stressors as potential modulators of adipose dysfunction during aging.  相似文献   

15.
Obesity is characterised by excessive accumulation of fat in white adipose tissue (WAT) which is compartmentalised into two anatomically and functionally diverse depots - visceral and subcutaneous. Advice to substitute essential polyunsaturated fatty acids (PUFAs) for saturated fatty acids is a cornerstone of various obesity management strategies. Despite an array of reports on the role of essential PUFAs on obesity, there still exists a lacuna on their mode of action in distinct depots i.e. visceral (VWAT) and subcutaneous (SWAT). The present study aimed to evaluate the effect of fish oil and corn oil on VWAT and SWAT in high-fat-diet-induced rodent model of obesity. Fish oil (FO) supplementation positively ameliorated the effects of HFD by regulating the anthropometrical and serum lipid parameters. FO led to an overall reduction in fat mass in both depots while specifically inducing beiging of adipocytes in SWAT as indicated by increased UCP1 and PGC1α. We also observed an upregulation of AMPKα and ACC1/2 phosphorylation on FO supplementation in SWAT suggesting a role of AMPK-PGC1α-UCP1 axis in beiging of adipose tissue. On the other hand, corn oil supplementation did not show any improvements in adipose tissue metabolism in both the depots of adipose tissue. The results were analysed using one-way ANOVA followed by Tukey's test in Graphpad Prism 5.0. Combined together our results suggest that n-3 PUFAs exert their anti-obesity effect by regulating adipokine secretion and inducing beiging of SWAT, hence increasing energy expenditure via thermogenic upregulation.  相似文献   

16.
Whereas truncal (central) adiposity is strongly associated with the insulin resistant metabolic syndrome, it is uncertain whether this is accounted for principally by visceral adiposity (VAT). Several recent studies find as strong or stronger association between subcutaneous abdominal adiposity (SAT) and insulin resistance. To reexamine the issue of truncal adipose tissue depots, we performed cross-sectional abdominal computed tomography, and we undertook the novel approach of partitioning SAT into the plane superficial to the fascia within subcutaneous adipose tissue (superficial SAT) and that below this fascia (deep SAT), as well as measurement of VAT. Among 47 lean and obese glucose-tolerant men and women, insulin-stimulated glucose utilization, measured by euglycemic clamp, was strongly correlated with both VAT and deep SAT (r = -0.61 and -0.64, respectively; both P < 0.001), but not with superficial SAT (r = -0.29, not significant). Also, VAT and deep SAT followed a highly congruent pattern of associations with glucose and insulin area under the curve (75-g oral glucose tolerance test), mean arterial blood pressure, apoprotein-B, high-density lipoprotein cholesterol, and triglyceride. Superficial SAT had markedly weaker association with all these parameters and instead followed the pattern observed for thigh subcutaneous adiposity. We conclude that there are two functionally distinct compartments of adipose tissue within abdominal subcutaneous fat and that the deep SAT has a strong relation to insulin resistance.  相似文献   

17.
Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.  相似文献   

18.
Recently, vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. In this study, we examined whether vaspin mRNA expression is a marker of visceral obesity and correlates with anthropometric and metabolic parameters in paired samples of visceral and subcutaneous adipose tissue from 196 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Vaspin mRNA expression was only detectable in 23% of the visceral and in 15% of the subcutaneous (SC) adipose tissue samples. Vaspin mRNA expression was not detectable in lean subjects (BMI<25) and was more frequently detected in patients with type 2 diabetes. No significant correlations were found between visceral vaspin gene expression and visceral fat area or SC vaspin expression. However, visceral vaspin expression significantly correlates with BMI, % body fat, and 2 h OGTT plasma glucose. Subcutaneous vaspin mRNA expression is significantly correlated with WHR, fasting plasma insulin concentration, and glucose infusion rate during steady state of an euglycemic-hyperinsulinemic clamp. Multivariate linear regression analysis revealed % body fat as strongest predictor of visceral vaspin and insulin sensitivity as strongest determinant of SC vaspin mRNA expression. In conclusion, our data indicate that induction of human vaspin mRNA expression in adipose tissue is regulated in a fat depot-specific manner and could be associated with parameters of obesity, insulin resistance, and glucose metabolism.  相似文献   

19.
JM Romao  W Jin  M He  T McAllister  le L Guan 《PloS one》2012,7(7):e40605

Background

MicroRNAs (miRNAs) are a class of molecular regulators found to participate in numerous biological processes, including adipogenesis in mammals. This study aimed to evaluate the differences of miRNA expression between bovine subcutaneous (backfat) and visceral fat depots (perirenal fat) and the dietary effect on miRNA expression in these fat tissues.

Methodology/Principal Findings

Fat tissues were collected from 16 Hereford×Aberdeen Angus cross bred steers (15.5 month old) fed a high-fat diet (5.85% fat, n = 8) or control diet (1.95% fat, n = 8). Total RNA from each animal was subjected to miRNA microarray analysis using a customized Agilent miRNA microarray containing 672 bovine miRNA probes. Expression of miRNAs was not equal between fat depots as well as diets: 207 miRNAs were detected in both fat depots, while 37 of these were found to be tissue specific; and 169 miRNAs were commonly expressed under two diets while 75 were diet specific. The number of miRNAs detected per animal fed the high fat diet was higher than those fed control diet (p = 0.037 in subcutaneous fat and p = 0.002 visceral fat). Further qRT-PCR analysis confirmed that the expression of some miRNAs was highly influenced by diet (miR-19a, -92a, -92b, -101, -103, -106, -142–5p, and 296) or fat depot (miR-196a and -2454).

Conclusions/Significance

Our results revealed that the miRNA may differ among adipose depots and level of fat in the diet, suggesting that miRNAs may play a role in the regulation of bovine adipogenesis.  相似文献   

20.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号