首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcoholic liver disease (ALD) is a major health problem worldwide and hepatic steatosis is an early response to alcohol consumption. Fat and glycogen are two major forms of energy storage in the liver; however, whether glycogen metabolism in the liver impacts alcohol-induced steatosis has been elusive. In this study, we used a mouse model with overexpression of PPP1R3G in the liver to dissect the potential role of glycogen on alcohol-induced fatty liver formation. PPP1R3G is a regulatory subunit of protein phosphatase 1 and stimulates glycogenesis in the liver. Chronic and binge ethanol (EtOH) feeding reduced glycogen level in the mouse liver and such inhibitory effect of EtOH was reversed by PPP1R3G overexpression. In addition, PPP1R3G overexpression abrogated EtOH-induced elevation of serum levels of alanine aminotransferase and aspartate aminotransferase, increase in liver triglyceride concentration, and lipid deposition in the liver. EtOH-stimulated sterol regulatory element-binding protein (SREBP)-1c, a master regulator of lipogenesis, was also reduced by PPP1R3G overexpression in vivo. In AML-12 mouse hepatocytes, PPP1R3G overexpression could relieve EtOH-induced lipid accumulation and SREBP-1c stimulation. In conclusion, our data indicate that glycogen metabolism is closely linked to EtOH-induced liver injury and fatty liver formation.  相似文献   

2.
3.
Mutations of Comparative Gene Identification-58 (CGI-58) in humans cause triglyceride (TG) accumulation in multiple tissues. Mice genetically lacking CGI-58 die shortly after birth due to a skin barrier defect. To study the role of CGI-58 in integrated lipid and energy metabolism, we utilized antisense oligonucleotides (ASOs) to inhibit CGI-58 expression in adult mice. Treatment with two distinct CGI-58-targeting ASOs resulted in ∼80–95% knockdown of CGI-58 protein expression in both liver and white adipose tissue. In chow-fed mice, ASO-mediated depletion of CGI-58 did not alter weight gain, plasma TG, or plasma glucose, yet raised hepatic TG levels ∼4-fold. When challenged with a high-fat diet (HFD), CGI-58 ASO-treated mice were protected against diet-induced obesity, but their hepatic contents of TG, diacylglycerols, and ceramides were all elevated, and intriguingly, their hepatic phosphatidylglycerol content was increased by 10-fold. These hepatic lipid alterations were associated with significant decreases in hepatic TG hydrolase activity, hepatic lipoprotein-TG secretion, and plasma concentrations of ketones, nonesterified fatty acids, and insulin. Additionally, HFD-fed CGI-58 ASO-treated mice were more glucose tolerant and insulin sensitive. Collectively, this work demonstrates that CGI-58 plays a critical role in limiting hepatic steatosis and maintaining hepatic glycerophospholipid homeostasis and has unmasked an unexpected role for CGI-58 in promoting HFD-induced obesity and insulin resistance.  相似文献   

4.
5.
6.
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and is presently the most common chronic liver disease. However, the mechanisms underlying the development of steatosis remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that modulate a variety of biological functions. We have investigated the role of miRNA in the development of steatosis. We found that miR-467b expression is significantly downregulated in liver tissues of high-fat diet fed mice and in steatosis-induced hepatocytes. The downregulation of miR-467b resulted in the upregulation of hepatic lipoprotein lipase (LPL), the direct target of miR-467b. Moreover, the interaction between miR-467b and LPL was associated with insulin resistance, a major cause of NAFLD. These results suggest that downregulation of miR-467b is involved in the development of hepatic steatosis by modulating the expression of its target, LPL.  相似文献   

7.
Nonalchoholic fatty liver disease (NAFLD) is the most common cause of liver dysfunction and is associated with metabolic diseases, including obesity, insulin resistance, and type 2 diabetes. We mapped a quantitative trait locus (QTL) for NAFLD to chromosome 17 in a cross between C57BL/6 (B6) and BTBR mouse strains made genetically obese with the Lep(ob/ob) mutation. We identified Tsc2 as a gene underlying the chromosome 17 NAFLD QTL. Tsc2 functions as an inhibitor of mammalian target of rapamycin, which is involved in many physiological processes, including cell growth, proliferation, and metabolism. We found that Tsc2(+/-) mice have increased lipogenic gene expression in the liver in an insulin-dependent manner. The coding single nucleotide polymorphism between the B6 and BTBR strains leads to a change in the ability to inhibit the expression of lipogenic genes and de novo lipogenesis in AML12 cells and to promote the proliferation of Ins1 cells. This difference is due to a different affinity of binding to Tsc1, which affects the stability of Tsc2.  相似文献   

8.
AimThe potential effects of heavy metals on non-alcoholic fatty liver disease (NAFLD) remain unknown. We investigated the sex-specific relationships of blood lead (BPb), mercury (BHg), and cadmium (BCd) levels with hepatic steatosis (HS) and fibrosis (HF).MethodWe included 4420 participants from the 2016–2017 Korea National Health and Nutrition Examination Survey. High-risk alcoholics and patients with chronic hepatitis B or C infections or liver cirrhosis were excluded. We calculated the hepatic steatosis index (HSI) and fibrosis-4 index (FIB-4) values; we defined the presence of HS and HF as an HSI ≥ 36 and FIB-4 score >2.67, respectively. We adjusted for age, smoking and alcohol consumption statuses, hypertension, obesity, diabetes, hypertriglyceridemia, and BPb, BHg, and BCd levels.ResultIn males (n = 1860), the HSI was correlated negatively with the BPb level and positively with the BHg level (both p < 0.01). The FIB-4 score was correlated positively with the BPb and BCd levels (both p < 0.01). In females (n = 2560), the HSI and FIB-4 score were correlated positively with the BPb, BHg, and BCd levels (all p < 0.01). After adjustments, the BHg level increased the risk of HS in both males (OR = 1.065, p = 0.003) and females (OR = 1.061, p = 0.048), and the BCd level increased the risk of HF in females (OR = 1.668, p = 0.012).ConclusionBlood heavy metal levels were generally correlated positively with the HSI and FIB4 score, more so in females than males. The BHg level was associated with HS in males and females, and the BCd level was associated with HF in females. Further studies on NAFLD progression according to heavy metal status and sex are warranted.  相似文献   

9.
Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD.  相似文献   

10.
11.
Evidence relating dietary patterns to obesity and related disorders such as non-alcoholic fatty liver disease (NAFLD) is limited in pediatric age. Aim of this study was to analyze the association between dietary patterns, obesity and development of severe steatosis and the metabolic syndrome in a series of children and adolescents referred for suspected NAFLD, and the interaction with the rs738409 I148M PNPLA3 polymorphism. Two hundred patients (112 females) had completed a food frequency and demographic questionnaire. Nearly 58 % were obese, and 32 % were overweight. Mild, moderate, and severe fatty liver was present in 60 (30 %), 87 (44 %), and 51 (26 %) participants, respectively. A great proportion of overweight/obese children and adolescents reported a correct dietary pattern. At multivariate ordinal regression analysis considering demographic, anthropometric, genetic, and behavioral determinants, the major determinant of steatosis severity was PNPLA3 I148M genotype (p < 0.0001), followed by older age (p = 0.017), higher waist circumference (p = 0.016), and less time spent practising physical exercise (p = 0.034). Furthermore, there was a significant interaction between PNPLA3 I148M and intake of sweetened beverages (p = 0.033) and of vegetables (p = 0.038). In conclusion, although dietary pattern was reportedly correct in at-risk overweight adolescents with NAFLD, we report a novel interaction between PNPLA3 I148M and dietary components with the severity of steatosis.  相似文献   

12.
《Molecular cell》2022,82(8):1528-1542.e10
  1. Download : Download high-res image (290KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. SFA accumulation has been previously shown to degrade endoplasmic reticulum (ER) function leading to other manifestations of the lipoapoptotic cascade. We hypothesized that dysfunctional phospholipid (PL) metabolism is an initiating factor in this ER stress response. Treatment of either primary hepatocytes or H4IIEC3 cells with the SFA palmitate resulted in dramatic dilation of the ER membrane, coinciding with other markers of organelle dysfunction. This was accompanied by increased de novo glycerolipid synthesis, significant elevation of dipalmitoyl phosphatidic acid, diacylglycerol, and total PL content in H4IIEC3 cells. Supplementation with oleate (OA) reversed these markers of palmitate (PA)-induced lipotoxicity. OA/PA cotreatment modulated the distribution of PA between lipid classes, increasing the flux toward triacylglycerols while reducing its incorporation into PLs. Similar trends were demonstrated in both primary hepatocytes and the H4IIEC3 hepatoma cell line. Overall, these findings suggest that modifying the FA composition of structural PLs can protect hepatocytes from PA-induced ER stress and associated lipotoxicity.  相似文献   

15.
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp−/−) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp−/− mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp−/− mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp−/− mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp−/− mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp−/− mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp−/− mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp−/− mice.  相似文献   

16.
Sirtuin1 (SIRT1) is a crucial regulator of metabolism and it is implicated in the metabolic pathophysiology of several disorders inclusive of Type 2 diabetes and fatty liver disease (NAFLD). The aim of this study was to investigate the role of miR-141 in hepatic steatosis via regulation of SIRT1/AMP-activated protein kinase (AMPK) pathway in hepatocytes. Liver hepatocellular cells (HepG2) were treated with high concentration of glucose to be subsequently used for the assessment of miR-141 and SIRT1 levels in a model of hepatic steatosis. On the other hand, cells were transfected with miR-141 to investigate its effect on hepatocyte steatosis and viability as well as SIRT1 expression and activity along with AMPK phosphorylation. Targeting of SIRT1 by miR-141 was evaluated by bioinformatics tools and confirmed by luciferase reporter assay. Following the intracellular accumulation of lipids in HepG2 cells, the level of miR-141 was increased while SIRT1 mRNA and protein levels, as well as AMPK phosphorylation, was decreased. Transfection with miR-141 mimic significantly downregulated SIRT1 expression and activity while miR-141 inhibitor had the opposite effects. Additionally, modulation of miR-141 levels significantly influenced AMPK phosphorylation status. The results of luciferase reporter assay verified SIRT1 to be directly targeted by miR-141. miR-141 could effectively suppress SIRT1 and lead to decreased AMPK phosphorylation in HepG2 cells. Thus, miR-141/SIRT1/AMPK signaling pathway may be considered a potential target for the therapeutic management of NAFLD.  相似文献   

17.
目的研究一种由鼠李糖乳杆菌DM9054和植物乳杆菌86066构成的降脂益生菌组合对非酒精性脂肪性肝病(NAFLD)小鼠胆固醇代谢的影响及其可能机制。方法 24只雄性LDLR-/-小鼠随机分为对照组、模型组和益生菌干预组。高脂饮食(HFD)15周建立小鼠NAFLD模型,造模同时干预组给予鼠李糖乳杆菌DM9054联合植物乳杆菌86066灌胃,对照组和模型组给予等量生理盐水灌胃。实验过程中监测各组小鼠体重变化。实验结束后,检测小鼠血清甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL)和高密度脂蛋白胆固醇(HDL)的水平差异。检测小鼠肝脏组织病理变化。使用Realtime PCR检测小鼠肠道内法尼脂受体(FXR)mRNA、顶端膜钠依赖的胆汁酸转运体(ASBT)mRNA、纤维生长因子15(FGF-15)mRNA和三磷酸腺苷结合盒转运体G5(ABCG-5)mRNA表达水平。Western blot检测小鼠肝脏胆固醇7α-羟化酶(CYP7A1)、FXR、三磷酸腺苷结合盒转运体G8(ABCG-8)、清道夫受体BI(SR-BI)、3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)、胆盐输出泵(ABCB-11)、纤维生长因子受体4(FGFR-4)和胆固醇调节元件结合蛋白-2(SREBP-2)蛋白表达水平。结果与模型组相比,降脂益生菌干预组小鼠体重减轻(P0.05);小鼠血清TC、TG、LDL水平降低,HDL水平升高(P0.05);小鼠肝脏脂肪变性和炎性细胞浸润的现象显著减少;小鼠肠道ASBT mRNA和ABCG-5mRNA表达水平明显降低(Ps0.05),FGF-15mRNA表达水平明显升高(P0.05),FXR mRNA表达水平差异无统计学意义(P0.05);小鼠肝脏FGFR-4蛋白表达水平升高(P0.05),SREBP-2和HMGCR蛋白表达水平降低(Ps0.05),FXR、CYP7A1、SR-BI、ABCG-8和ABCB-11蛋白表达水平差异无统计学意义(Ps0.05)。结论降脂益生菌可能通过激活FXR-FGF15通路调节胆汁酸代谢;通过下调SREBP-2表达水平,抑制HMGCR表达,减少胆固醇的生成,从而起到改善非酒精性脂肪肝的作用。  相似文献   

18.
19.
Niemann-Pick C1-Like 1 (NPC1L1) mediates intestinal absorption of dietary and biliary cholesterol. Ezetimibe, by inhibiting NPC1L1 function, is widely used to treat hypercholesterolemia in humans. Interestingly, ezetimibe treatment appears to attenuate hepatic steatosis in rodents and humans without a defined mechanism. Overconsumption of a high-fat diet (HFD) represents a major cause of metabolic disorders including fatty liver. To determine whether and how NPC1L1 deficiency prevents HFD-induced hepatic steatosis, in this study, we fed NPC1L1 knockout (L1-KO) mice and their wild-type (WT) controls an HFD, and found that 24 weeks of HFD feeding causes no fatty liver in L1-KO mice. Hepatic fatty acid synthesis and levels of mRNAs for lipogenic genes are substantially reduced but hepatic lipoprotein-triglyceride production, fatty acid oxidation, and triglyceride hydrolysis remain unaltered in L1-KO versus WT mice. Strikingly, L1-KO mice are completely protected against HFD-induced hyperinsulinemia under both fed and fasted states and during glucose challenge. Despite similar glucose tolerance, L1-KO relative WT mice are more insulin sensitive and in the overnight-fasted state display significantly lower plasma glucose concentrations. In conclusion, NPC1L1 deficiency in mice prevents HFD-induced fatty liver by reducing hepatic lipogenesis, at least in part, through attenuating HFD-induced insulin resistance, a state known to drive hepatic lipogenesis through elevated circulating insulin levels.  相似文献   

20.
摘要 目的:探讨不同脂肪酸对肝细胞系脂质积累、细胞损伤的影响,选择合适诱导试剂及肝细胞系建立一种具有严重细胞损伤及炎症反应的晚期代谢相关脂肪性肝病(MAFLD)体外细胞模型。方法:以油酸(OA)或棕榈酸(PA)或其混合物分别处理HepG2和LO2细胞,以CCK8检测细胞存活率;以油红O染色及甘油三酯酶法检测细胞脂质积累程度;以qRT-PCR检测凋亡相关蛋白、纤维化相关蛋白、自噬相关蛋白、炎症因子的mRNA表达水平。结果:0.25 mmol/LPA作用HepG2细胞24 h可显著诱导甘油三酯(TG)和脂质积累,但对LO2细胞无明显影响;0.25 mmol/L PA处理两种细胞系可诱导显著的细胞损伤及炎症,OA可缓解PA对细胞的损伤作用。结论:利用PA处理HepG2细胞可引起一定程度的脂质积累,诱导显著的细胞损伤及炎症,是合适的MAFLD体外细胞模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号