首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rat corneal epithelium has been chosen as a model for studying growth regulation. In this epithelium a large single cohort of cells enters the S phase during a fairly short time period once a day. The factor responsible for this wave of cell proliferation is unknown, but it may be a chemical signal from the central nervous system (the suprachiasmatic nucleus or the corpus pineale). The mature cell compartment of the corneal epithelium is assumed to produce a negative feedback factor (chalone), counteracting the effect of the circadian proliferative factor on the local cell proliferation. When no circadian factor is being produced, during most of the 24 h, the chalone seems to enhance the maturation process. During diminished chalone production (e.g. after cell injury and subsequent regeneration), we will get a more or less unrestricted cell proliferation in the tissue with a delayed maturation process prolonging the chalone depletion. This interaction between the circadian proliferative factor and the negative feedback factor for regulation of proliferation with its accompanying stimulatory effect on maturation, may represent a general mechanism in the regulation of cell proliferation in any tissue. Since in at least some organs virtually all cells entering the S phase do this as a single wave once a day, this mechanism may be enough to explain the regulation of cell proliferation during both normal and regenerative conditions.  相似文献   

2.
Basonuclin is a zinc finger protein with highly restricted tissue distribution. It has been found in abundance only in keratinocytes of stratified epithelia and the germ cells of the testis and ovary. We studied the expression pattern of basonuclin in relation to cellular proliferation and differentiation in murine corneal and lens epithelia, two self-renewing tissues in the eye which contain cells that proliferate throughout life. Mouse corneal and lens epithelial cells at various stages of development were labeled with BrdU for 90 min to detect cells in S phase and to establish proliferative rates. Whole eyes of mouse or rat were processed for frozen sections and cellular basonuclin was detected by either a rabbit antimouse- or a rabbit anti-human-basonuclin antibody. Basonuclin was expressed in virtually all cells in the basal layer of corneal epithelium and in the pre-equatorial lens epithelium, the respective proliferative compartments of adult corneal and lens epithelia. Basonuclin expression in corneal epithelium began at post-natal life day 4, first in a few cells and then spread to virtually all basal cells at day 20. Basonuclin was consistently absent in limbal epithelium. Lens basonuclin, which was detected earlier than that of the cornea, was confined to the pre-equatorial epithelium and was absent in equatorial cells that expressed p57KIP2, an early differentiation marker for these cells. An important distinction between corneal and lens basonuclin is that the former is predominantly nuclear whereas the latter cytoplasmic.  相似文献   

3.
The action of hepatic chalone on cell proliferation in inoculated hepatoma 22a of mice was studied in the presence of a changed level of glucocorticoid hormones in experimental animals. Chalone was obtained from the liver of intact rats by ethanol precipitation. The intensity of cell proliferation in hepatoma was evaluated by the colcemide and autoradiography methods. Six hours after chalone injection c-mitosis in the tumor decreased 2.7-fold, and the DNA index 6.8-fold. It may be concluded that the preparation used contains both G1- and G2-chalones. Single or repeated injections of hydrocortisone to mice inhibits cell proliferation to a less degree than administration of chalone alone. Combination of hydrocortisone and chalone produces the same effect as injection of chalone alone. Adrenalectomy diminishes susceptibility of hepatoma cells to exogenous chalone. The degree of tumor proliferative activity in the adrenalectomized animals was half as much after chalone injection, as compared to that in intact animals. Thus, a certain level of glucocorticoid hormones in hepatoma tissue is necessary to reveal the action of chalones.  相似文献   

4.
A prominent circadian rhythm was found in the labelling indices (LI) of the peripheral rat corneal epithelium and of the adjacent conjunctival epithelium, while almost no diurnal variation was found in the central area. Application of a double labelling technique indicated that there are rhythmic pulses of high and low influx of cells into the S phase and similar pulses of efflux of cells from the S phase. Results of the study indicate that there are different cohorts of cycling cells all over the rat corneal epithelium. Cells belonging to a rapidly proliferating cohort are observed in the peripheral cornea. There is a gradual reduction in the fraction of labelled DNA-synthesizing cells towards the centre. The considerably lower fraction of cells taking up tritiated thymidine (3H)TdR in the central cornea may be due to a higher fraction of basal cells having reached higher levels of differentiation. This may result in a shift from the salvage to the de novo pathway. The slowly proliferating cohort seems to have a prolonged S phase duration and displays practically no diurnal variation in the LI. The DNA-synthesizing cells belonging to this latter cohort probably use the salvage pathway for DNA synthesis resulting in uptake of (3H)TdR all over the cornea. The LI is thus not a reliable indicator of cell proliferation in the corneal epithelium, due both to the heterogeneity of the cell proliferation, and in particular due to the lack of labelling of the centrally located DNA-synthesizing cells. To what extent these properties may also be present in other proliferating tissues with different levels of differentiations, may be questioned.  相似文献   

5.
The timing of cell proliferation is a key factor contributing to the regulation of normal growth. Daily rhythms of cell cycle progression have been documented in a wide range of organisms. However, little is known about how environmental, humoral, and cell-autonomous factors contribute to these rhythms. Here, we demonstrate that light plays a key role in cell cycle regulation in the zebrafish. Exposure of larvae to light-dark (LD) cycles causes a range of different cell types to enter S phase predominantly at the end of the day. When larvae are raised in constant darkness (DD), a low level of arrhythmic S phase is observed. In addition, light-entrained cell cycle rhythms persist for several days after transfer to DD, both observations pointing to the involvement of the circadian clock. We show that the number of LD cycles experienced is essential for establishing this rhythm during larval development. Furthermore, we reveal that the same phenomenon exists in a zebrafish cell line. This represents the first example of a vertebrate cell culture system where circadian rhythms of the cell cycle are observed. Thus, we implicate the cell-autonomous circadian clock in the regulation of the vertebrate cell cycle by light.  相似文献   

6.
A I Antokhin  Iu A Romanov 《Tsitologiia》1982,24(11):1312-1318
The mitosis inhibitory action of chalone-containing preparation of the Ehrlich ascite tumour was shown to depend on the time of its administration on round the clock, and on the circadian rhythm phase of the mitotic activity in this tumour. This allowed a conclusion that the chalone system of the tumour may be involved in the formation of the circadian rhythm of cell division. It was found that Ehrlich's ascite tumour chalone system regulated DNA synthesis influencing the cell passage from G1-phase of the mitotic cycle to S-phase, and the processes occurring during S-phase.  相似文献   

7.
The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of Sema3A is increased markedly in basal cells of the newly healed corneal epithelium, and that this up-regulation of Sema3A is not associated with cell proliferation. They further suggest that Sema3A might play a role in the regulation of corneal epithelial wound healing.  相似文献   

8.
The epithelium of mouse cornea and lymph nodes was examined for DNA-synthetic and mitotic activity at different times after thymectomy and administration of T-activin, an active factor of the thymus. Thymectomy entails retardation of the rate of corneal epithelium regeneration, diminution in both tissues under study of the amplitude of oscillations in cell proliferation throughout the day. Administration to the animals of the immunoactive thymic factor T-activin makes the circadian rhythm of cell proliferation return to normal. It is assumed that T-activin raises the capacity of lymphocytes to interact with epithelial cells, which manifests itself in the enhancement of their mitotic activity.  相似文献   

9.
A stathmokinetic method was used to study the diurnal variation in the mitotic rate (MR) of the rat corneal epithelium, and in the adjacent conjunctival epithelium. A prominent circadian variation in cell proliferation was observed in both epithelia, both showing almost the same pattern, which may indicate that both tissues are submitted to the same regulatory mechanisms. The average rate of cell renewal during a 24 h period indicated a mean cell renewal time of 12.3 days. This is longer than previously assumed. The MR declined toward the central cornea. Based on the above observations and the known centripetal migration of cells in the corneal epithelium, we have developed a mathematical model showing isomorphism with the renewal of the corneal epithelium.  相似文献   

10.
Control of the rate of cellular proliferation in the erythron seems to be mediated by a tissue-specific mitotic inhibitor, termed the erythrocytic chalone. the function of this substance seems to be to prevent excessive proliferation of the erythrocyte precursor cells by means of a negative feedback and in terms of peripheral cell numbers.
The erythrocytic chalone is present in mature erythrocytes, from which it can be extracted by incubation in a chemically defined medium. It is also present in fresh normal serum and it is possible that in physiological conditions the factor is continuously liberated from mature erythrocytes into the surrounding plasma.
In the rat, in an artificially induced polycythaemia the concentration of the chalone in the serum is increased and this increment appears to be the sole cause of the enhanced inhibitory action of polycythaemic serum on the proliferation of the bone marrow cells in vitro.
The mode of action of the erythrocytic chalone seems to be to prevent the erythrocyte precursor cells from entering the generative cell cycle; the chalone thus regulates the production of erythrocytes by changing the 'proliferation efficiency' in the erythron.
So far, nothing is known about the chemical nature of the erythrocytic chalone. However, in gel filtration it is eluted in the same zone as the granulocytic chalone, its molecular weight thus being about 2000-4000.  相似文献   

11.
Endogenous factors inhibiting the proliferation of T-lymphocytes were investigated which may function as modulators of T-lymphocyte production within the thymus. An extract from calf thymus (T4) enriched in lymphocyte chalone arrests rat thymocytes at the G1 leads to S boundary and in the S phase of the cell cycle in short-term cultures. It also inhibits the proliferative response of human peripheral blood lymphocytes to PHA-P in a time-dependent manner, as well as the spontaneous proliferation of in vitro cultured human chronic leukaemic lymphoblasts. This crude extract contains two active moities which can be isolated by molecular filtration on Sephadex G-75 column. A species non-specific, cell line selectivity inhibitory effect is characteristic of the high molecular weight fraction (mol. wt. greater than 40,000). This activity is resistant to moderate heat treatment and trypsin but is sensitive to mild alkaline hydrolysis and to RNase A digestion. About ten protein components and a toluidine blue positive substance can be detected by analytical polyacrylamide gel electrophoresis. The active inhibitor, a proposed protein-RNA complex, might be identical with the chalone. The low molecular weight, non-dialysable factor (T4-4) inhibits [3H]thymidine incorporation into acid insoluble DNA in a cell non-specific manner. A possible relationship between the two activities is discussed.  相似文献   

12.
The number of cells in the S-phase fraction of the cell cycle reflects proliferative activity. Using flow cytometry histograms and the Phoenix M+ cell cycle program, the percent of cells in the S-phase fraction was measured in single cell suspensions prepared from testes of hamsters of different ages. A cyclical pattern with a period of 9 days, superimposed on another rhythm with a 38 day period was observed (p < 0.01) during hamster maturation and it disappeared after the second spermatogenic wave, where the S phase values reached a plateau. It was concluded that maturing animals passed through a stage in which testicular biological rhythm was involved. Therefore it was concluded that it takes approximately two spermatogenic waves before the proliferation rate in the testis reached a steady state.  相似文献   

13.
14.
In the seminiferous epithelium the differentiating spermatogonia proliferate following a very strict synchronous pattern, and undergo the S phase during parts of particular epithelial stages. The undifferentiated spermatogonia do not divide synchronously and display maximum proliferative activity in stages XI-III. Hence the S-phase-specific cytotoxic agent Ara-C kills different proportions of these two cell types dependent on the epithelial stage. We have studied the effect of several combinations of degrees of cell loss to both compartments on proliferation of the undifferentiated spermatogonia. It was found that when the differentiating spermatogonia are removed, the proliferation of the undifferentiated spermatogonia is not inhibited at epithelial stage III, as seen in controls. However, when the undifferentiated spermatogonia were already arrested in G1, removal of the differentiating spermatogonia did not evoke proliferation again. When the population of undifferentiated spermatogonia was reduced in an area where the differentiating spermatogonia were left intact, the inhibition of the proliferation of undifferentiated spermatogonia took place around stage III as usual. It is concluded that in the normal adult seminiferous epithelium, the length of the period of active proliferation of the undifferentiated spermatogonia is regulated by negative feedback from the differentiating spermatogonia.  相似文献   

15.
Endogenous factors inhibiting the proliferation of T-lymphocytes were investigated which may function as modulators of T-lymphocyte production within the thymus. an extract from calf thymus (T4) enriched in lymphocyte chalone arrests rat thymocytes at the G1 S boundary and in the S phase of the cell cycle in short-term cultures. It also inhibits the proliferative response of human peripheral blood lymphocytes to PHA-P in a time-dependent manner, as well as the spontaneous proliferation of in vitro cultured human chronic leukaemic lymphoblasts. This crude extract contains two active moities which can be isolated by molecular filtration on Sephadex G-75 column. A species non-specific, cell line selectivity inhibitory effect is characteristic of the high molecular weight fraction (mol. wt. > 40,000). This activity is resistant to moderate heat treatment and trypsin but is sensitive to mild alkaline hydrolysis and to RNase A digestion. About ten protein components and a toluidine blue positive substance can be detected by analytical polyacrylamide gel electrophoresis. the active inhibitor, a proposed protein-RNA complex, might be identical with the chalone. The low molecular weight, non-dialysable factor (T4–4) inhibits [3H]thymidine incorporation into acid insoluble DNA in a cell non-specific manner. A possible relationship between the two activities is discussed.  相似文献   

16.
In normal conditions the granulocytic cell population is prevented from excessive cell proliferation by a humoral mechanism based on a specific feedback inhibitor, granulocytic chalone. In conditions of acute functional demand a tissue-specific stimulator, granulocytic antichalone, replaces chalone in rat serum. Mature granulocytes contain, and presumably produce, the chalone which is also present in fresh normal serum. Thus, the inhibitor is both humoral and present within the same cell system on which it acts: the action of this chalone is target tissue specific as it only inhibits granulocytic precursor cells in normal rat bone marrow in vitro. Granulocytic chalone and antichalone were partly purified by gel filtration on Sephadex; the elution parameters suggested molecular weights of 4000 and 30,000–35,000, respectively. Granulocytic chalone was not separated from the erythrocytic chalone (present in fresh normal serum and in blood erythrocytes) on Sephadex; however, separation at the cellular level was easily achieved.  相似文献   

17.
Epithelial proliferation in the ventral surface of mouse tongue follows a pronounced circadian rhythm with a peak in mitotic activity at 10.00 a.m., preceded by a wave of DNA synthesis 8 h earlier. Nearly all cells (85%) pass through G2 and mitosis immediately after the S-phase; they subsequently divide again, usually after 2 or 3 days, indicating cohorts of cells with different G1-duration. The fraction of all nucleated cells comprised in one daily proliferation wave is about 20%, indicating a turnover time of the nucleated cell compartment of about 5 days. Cytotoxic injury by a single radiation dose of 20 Gy causes a steep decrease in cell counts, leading to complete denudation after 9–13 days. The difference between the latent period before ulceration and the tissue turnover time is explained by a marked proliferative activity of the doomed cells. The mitotic index increases steeply after day 1 to three times the control level, but most mitotic figures display gross abnormalities such as multipolar spindles or chromosome clumping. As a consequence cells with abnormal or multiple nuclei appear in the basal layers 3 days post irradiation and subsequently migrate to the upper layers. After denudation the epithelium rapidly becomes restored, with a phase of transient hyperplasia on days 13–14. Normal architecture is regained by day 15. Over the whole healing period the mitotic index remains at a high level, with most of the mitoses appearing histologically normal.  相似文献   

18.
Median S-phase lengths of pinna epidermis and sebaceous glands, and of epithelia from the oesophagus and under surface of the tongue of Albino Swiss S mice were estimated by the percentage labelled mitoses method (PLM). The 18.4 and 18,8 hr for the median length of S-phase for pinna epidermis and sebaceous glands respectively made it possible for these two tissues to be used experimentally for testing tissue specificity in chalone assay experiments. The 10.0 and 11.5 hr for oesophagus ang tongue epithelium respectively made experimental design for chalone assay difficult when pinna epidermis was the target tissue. The results of the Labelling Index measured each hour throughout a 24-hr period showed no distinct single peaked diurnal rhythm for pinna epidermis and sebaceous glands. Instead a circadian rhythm with several small peaks occurred which would be expected if an S-phase of approximately 18 hr was imposed on the diurnal rhythm. This indicates that there may be very little change in the rate of DNA synthesis. The results are given for the assay in vivo of purified epidermal G1 and G2 chalones, and the 72--81% ethanol precipitate of pig skin from which they could be isolated. These experiments were performed over a time period which took into account the diurnal rhythm of activity of the mice as well as the S-phase lengths. Extrapolating the results with time of action of the chalone shows that the G1 chalone acts at the point of entry into DNA synthesis and that the S-phase length was approximately 17 hr for both the pinna epidermis and sebaceous glands. This may be a more correct value since the PLM method overestimates the median S-phase length as it is known that in pinna skin the [3H]TdR is available to the tissues for 2 hr and true flash labelling does not take place. The previous reports that epidermal G1 chalone acts some hours prior to entry into S-phase resulted from experiments on back skin where the S-phase is shorter and there is a pronounced diurnal rhythm which could mask the chalone effect. The epidermal G2 chalone had no effect on DNA synthesis even at different times in the circadian rhythm. Thus the circadian rhythms and S-phase lengths of the test tissues need to be considered when experiments are performed with chalones. Ideally, the target tissues selected for cell line specificity tests should have the same cell kinetics for the easier and more accurate assessment and interpretation of results. When the tissues have markedly different cell kinetics, experimental procedures and results need to be evaluated accordingly. The point of action of G1 chalone can only be assessed if the effect is measured over the peak of incorporation of [3H]TdR into DNA. The results of the effects of skin extracts are analysed in relation to changes in the availability of [3H]TdR for the incorporation into DNA and to the possibility of there being two distinct populations of proliferating cells.  相似文献   

19.
Epithelial proliferation in the ventral surface of mouse tongue follows a pronounced circadian rhythm with a peak in mitotic activity at 10.00 a.m., preceded by a wave of DNA synthesis 8 h earlier. Nearly all cells (85%) pass through G2 and mitosis immediately after the S-phase; they subsequently divide again, usually after 2 or 3 days, indicating cohorts of cells with different G1-duration. The fraction of all nucleated cells comprised in one daily proliferation wave is about 20%, indicating a turnover time of the nucleated cell compartment of about 5 days. Cytotoxic injury by a single radiation dose of 20 Gy causes a steep decrease in cell counts, leading to complete denudation after 9-13 days. The difference between the latent period before ulceration and the tissue turnover time is explained by a marked proliferative activity of the doomed cells. The mitotic index increases steeply after day 1 to three times the control level, but most mitotic figures display gross abnormalities such as multipolar spindles or chromosome clumping. As a consequence cells with abnormal or multiple nuclei appear in the basal layers 3 days post irradiation and subsequently migrate to the upper layers. After denudation the epithelium rapidly becomes restored, with a phase of transient hyperplasia on days 13-14. Normal architecture is regained by day 15. Over the whole healing period the mitotic index remains at a high level, with most of the mitoses appearing histologically normal.  相似文献   

20.
Abstract. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours.
A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase).
Labelled mitoses curves and metaphase accumulation after colchicin injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days.
Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration.
The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.
The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号