首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We determined that LVS and Schu S4 strains of the human pathogen Francisella tularensis express a siderophore when grown under iron-limiting conditions. We purified this siderophore by conventional column chromatography and high-pressure liquid chromatography and used mass spectrometric analysis to demonstrate that it is structurally similar to the polycarboxylate siderophore rhizoferrin. The siderophore promoted the growth of LVS and Schu S4 strains in iron-limiting media. We identified a potential siderophore biosynthetic gene cluster encoded by fslABCD in the F. tularensis genome. The first gene in the cluster, fslA, encodes a member of the superfamily of nonribosomal peptide synthetase-independent siderophore synthetases (NIS synthetases) characterized by the aerobactin synthetases IucA and IucC. We determined that fslA is transcribed as part of an operon with downstream gene fslB and that the expression of the locus is induced by iron starvation. A targeted in-frame nonpolar deletion of fslA in LVS resulted in the loss of siderophore expression and in a reduced ability of F. tularensis to grow under conditions of iron limitation. Siderophore activity and the ability to grow under iron limitation could be regained by introducing the fslA(+) gene on a complementing plasmid. Our results suggest that the fslA-dependent siderophore is important for survival of F. tularensis in an iron-deficient environment.  相似文献   

2.
Plasmid pJM1 from an invasive strain of Vibrio anguillarum encodes an iron uptake system which mediates the biosynthesis of a siderophore and a membrane receptor for the iron-siderophore complex. This system has been associated with the ability of V. anguillarum to cause hemorrhagic septicemic disease in marine fish. Recombinant derivatives containing essential regions of the pJM1-mediated iron uptake system cloned into cosmid vector pVK102 were introduced into low-virulence iron uptake-deficient V. anguillarum strains by using a trifactor mating procedure with helper plasmid pRK2013. Three recombinant clones, pJHC-T7, pJHC-T11, and pJHC-T2612, possessed genetic determinants for receptor activity. Production of receptor activity was correlated in all three cases with the presence of OM2, an 86-kilodalton outer membrane protein which was induced under iron-limiting conditions. Two of the clones, pJHC-T7 and pJHC-T2612, also coded for the production of siderophore activity, although at a much lower level than the wild type. Strains harboring either of these two clones were still unable to grow under iron-limiting conditions. This inability was overcome only when other indigenous pJM1 derivatives were present in the cells in addition to the recombinant cosmids. This restoration of high siderophore production and ability to grow under iron-limiting conditions was achieved even when the indigenous plasmids possessed lesions in genes involved in siderophore activity or in both siderophore and receptor production. Thus, another function mediated by plasmid pJM1, possibly a transacting factor, may play a role in the regulation of siderophore production. Results of experimental infections demonstrated that restoration of the ability to grow under conditions of iron limitations by introduction of an recombinant clone into one of the low-virulence V. anguillarum strains was correlated with an increase in bacterial pathogenicity.  相似文献   

3.
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes.  相似文献   

4.
The biosynthetic gene cluster of the myxochelin-type iron chelator was cloned from Stigmatella aurantiaca Sg a15 and characterized. This catecholate siderophore was only known from two other myxobacteria. The biosynthetic genes of 2,3-dihydroxybenzoic acid are located in the cluster (mxcC-mxcF). Two molecules of 2, 3-dihydroxybenzoic acid are activated and condensed with lysine in a unique way by a protein homologous to nonribosomal peptide synthetases (MxcG). Inactivation of mxcG, which encodes an adenylation domain for lysine, results in a myxochelin negative mutant unable to grow under iron-limiting conditions. Growth could be restored by adding Fe3+, myxochelin A or B to the medium. Inactivation of mxcD leads to the same phenotype. A new type of reductive release from nonribosomal peptide synthetases of the 2, 3-dihydroxybenzoic acid bis-amide of lysine from MxcG, catalyzed by a protein domain with homology to NAD(P) binding sites, is discussed. The product of a gene, encoding a protein similar to glutamate-1-semialdehyde 2,1-aminomutases (mxcL), is assumed to transaminate the aldehyde that is proposed as an intermediate. Further genes encoding proteins homologous to typical iron utilization and iron uptake polypeptides are reported.  相似文献   

5.
We describe in this work a new iron uptake system encoded by chromosomal genes in pathogenic strains of Vibrio anguillarum. This iron uptake system differs from the plasmid-encoded anguibactin-mediated system present in certain strains of V. anguillarum in several properties. The siderophore anguibactin is not utilized as an external siderophore, and although characteristic outer membrane proteins are synthesized under iron-limiting conditions, these are not related to the plasmid-mediated outer membrane protein OM2 associated with ferric anguibactin transport. Furthermore, the siderophore produced by the plasmidless strains may be functionally related to enterobactin as demonstrated by bioassays with enterobactin-deficient mutants, although its behavior under various chemical treatments suggested major differences from that siderophore. Hybridization experiments suggested that the V. anguillarum chromosome-mediated iron uptake system is unrelated genetically to either the anguibactin or enterobactin-associated iron assimilation systems.  相似文献   

6.
7.
The plant-growth-stimulating Pseudomonas putida WCS358 was mutagenized with transposon Tn5. The resulting mutant colony bank was screened for mutants defective in the biosynthesis of the fluorescent siderophore. A total of 28 mutants, divided into six different classes, were isolated that were nonfluorescent or defective in iron acquisition or both. These different types of mutants together with the probable overall structure of the siderophore, i.e., a small peptide chain attached to a fluorescing group, suggest a biosynthetic pathway in which the synthesis of the fluorescing group is preceded by the synthesis of the peptide part. A gene colony bank of P. putida WCS358 was constructed with the broad-host-range cosmid vector pLAFR1. This genomic library, established in Escherichia coli, was mobilized into the 28 individual mutants, screening for transconjugants restored in fluorescence or growth under iron-limiting conditions or both. A total of 13 cosmids were found to complement 13 distinct mutants. The complementation analysis revealed that at least five gene clusters, with a minimum of seven genes, are needed for siderophore biosynthesis. Some of these genes seem to be arranged in an operon-like structure.  相似文献   

8.
9.
10.
Vibrio strains isolated from diseased turbot in an experimental fish farm on the Atlantic coast of northwest Spain were identified as Vibrio anguillarum. The isolates shared many biochemical characteristics with V. anguillarum strains obtained from other sources, and harboured a plasmid species that showed extensive homology with plasmid pJM1, carried by V. anguillarum strain 775 isolated from an epizootic in North America. Restriction endonuclease analysis showed that the two plasmids were very similar albeit not identical. The presence of the plasmid in the turbot isolates was associated with their ability to cause disease in fish. Plasmid-carrying bacteria could also grow under conditions of iron limitation. Two outer membrane proteins, of 86 and 79 kDal, were induced, and a similar siderophore activity to that produced by V. anguillarum 775 was also detected under these conditions. The 86 kDal outer membrane protein cross-reacted immunologically with antiserum raised against the outer membrane protein OM2 produced by strain 775. Nonvirulent plasmidless derivatives were unable to grow under iron-limiting conditions, and were also unable to produce either siderophore activity or the 86 kDal outer membrane protein, suggesting the plasmid-mediated nature of these components.  相似文献   

11.
Plant growth-promoting Pseudomonas B10 produces its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin under iron-limiting conditions. A structural gene encoding the 85,000-Da putative outer membrane receptor protein for ferric pseudobactin was identified in a gene bank from Pseudomonas B10 prepared with the broad host-range conjugative cosmid cloning vector pLAFR1. Transposon Tn5 mutagenesis of recombinant plasmid pJLM300 localized the functional gene to a region of approximately 2.4 kilobases consistent with the apparent molecular weight of the receptor protein. Mobilization of pJLM300 into Pseudomonas A124 and A225, whose growth was inhibited by Pseudomonas B10 or pseudobactin, rendered these strains no longer susceptible to iron starvation by pseudobactin because they were now able to transport ferric pseudobactin. Pseudobactin biosynthetic genes flanked this receptor gene on both sides and were on separate operons. Transposon Tn5 insertion mutants of Pseudomonas B10 lacking this receptor protein were generated by a marker exchange technique and were defective in ferric pseudobactin transport. Such mutants could be complemented in trans by pJLM300. The production of pseudobactin, the receptor protein, and four other outer membrane proteins in Pseudomonas B10 was coordinately regulated by the level of intracellular iron.  相似文献   

12.
13.
14.
15.
C Enard  A Diolez    D Expert 《Journal of bacteriology》1988,170(6):2419-2426
In Erwinia chrysanthemi, conditions of iron starvation initiate production of a catechol-type siderophore and enhance production of three outer membrane polypeptides. Twenty-two mutants affected in the different stages of this iron assimilation system were isolated by mini-Mu insertion mutagenesis. All of them failed to induce systemic soft rot on axenically grown Saintpaulia plants. From the siderophore auxotrophs and the iron uptake mutants, clones having recovered the missing function(s) were isolated by using the in vivo cloning vector pULB113 (RP4::mini-Mu). An R-prime plasmid containing a ca. 35.5-kilobase-pair DNA insert was identified. Restoration of the iron functions restored partially, if not completely, the virulence of the parental strain.  相似文献   

16.
17.
18.
Vibrio cholerae produces the novel phenolate siderophore vibriobactin and several outer membrane proteins in response to iron starvation. To determine whether any of these iron-regulated outer membrane proteins serves as the receptor for vibriobactin, the classical V. cholerae strain 0395 was mutagenized by using TnphoA, and iron-regulated fusions were analyzed for vibriobactin transport. One mutant, MBG14, was unable to bind or utilize exogenous vibriobactin and did not grow in low-iron medium. However, synthesis of the siderophore and transport of other iron complexes, including ferrichrome, hemin, and ferric citrate, were unaffected in MBG14. Analysis of membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the loss from the mutant of a 74-kDa iron-regulated outer membrane protein present in the parental strain when grown in iron-limiting conditions. This protein partitioned into the detergent phase during Triton X-114 extraction, suggesting that it is a hydrophobic membrane protein. DNA sequences encoding the gene into which TnphoA had inserted, designated viuA (vibriobactin uptake), restored the wild-type phenotype to the mutant; the complemented mutant expressed the 74-kDa outer membrane protein under iron-limiting conditions and possessed normal vibriobactin binding and uptake. These data indicate that the 74-kDa outer membrane protein of V. cholerae serves as the vibriobactin receptor.  相似文献   

19.
Iron uptake mechanisms were investigated in different species of Salmonella isolated from environmental waters. All strains examined were able to grow in the presence of high concentrations (10 mM) of the iron chelator EDDA. All strains excreted phenolate and hydroxamate siderophores, as assessed by bioassays and chemical tests. Bioassays with different indicator strains showed that all Salmonella strains can cross-feed other Enterobacteria, as well as mutants of Salmonella typhimurium deficient in the Enterobactin system, suggesting that this siderophore may be produced by the environmental Salmonella strains. The siderophore aerobactin may also be produced by one of the strains, according to the bioassays results. The same pattern of outer membrane proteins are synthesized under iron-limiting conditions in all species tested, which suggests a similarity of iron uptake systems in many species of Salmonella. This system could be also of great importance in the survival of these bacteria in natural waters, as well as in possible pathogenic mechanisms.  相似文献   

20.
The iron assimilation system of Erwinia chrysanthemi 3937 is mediated by the catechol-type siderophore chrysobactin and the outer membrane transport protein Fct. We generated a variety of subclones in high- and low-copy-number vectors from a wild-type recombinant cosmid shown previously to carry the gene cluster fct-cbsA, cbsB, cbsC, cbsE encoding chrysobactin transport and biosynthetic functions, respectively. We studied their expression in Escherichia coli enterobactin-deficient entA, entB, entC, and entE mutants. This provided evidence that the fct and cbs genes are regrouped within a single genetic unit of ca. 8 kb in the following order: fct, cbsC, cbsE, cbsB, and cbsA. The gene boundaries were determined, and the various recombinant plasmids were expressed in Escherichia coli minicells: CbsA and CbsC enzymatic activities were clearly identified as polypeptides with apparent molecular masses of 32,000 and 38,000, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号