首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
2.
3.
4.
Escherichia coli RecG and RecA proteins in R-loop formation.   总被引:12,自引:2,他引:10       下载免费PDF全文
X Hong  G W Cadwell    T Kogoma 《The EMBO journal》1995,14(10):2385-2392
  相似文献   

5.
6.
7.
8.
Viable mutations affecting the 5'-phosphate sensor of RNase E, including R169Q or T170A, become lethal when combined with deletions removing part of the non-catalytic C-terminal domain of RNase E. The phosphate sensor is required for efficient autoregulation of RNase E synthesis as RNase E R169Q is strongly overexpressed with accumulation of proteolytic fragments. In addition, mutation of the phosphate sensor stabilizes the rpsT P1 mRNA as much as sixfold and slows the maturation of 16S rRNA. In contrast, the decay of other model mRNAs and the processing of several tRNA precursors are unaffected by mutations in the phosphate sensor. Our data point to the existence of overlapping mechanisms of substrate recognition by RNase E, which lead to a hierarchy of efficiencies with which its RNA targets are attacked.  相似文献   

9.
To determine if proteins RNase III and rho, both of which can determine the 3' ends of RNA molecules, can complement each other, double mutants defective in these two factors were constructed. In all cases (four rho mutations tested) the double mutants were viable at lower temperatures, but were unable to grow at higher temperatures at which both of the parental strains grew. Genetic analyses suggested that the combinations of the rnc rho (RNase III-Rho-) mutations was necessary and probably sufficient to confer temperature sensitivity on carrier strains. Physiological studies showed that synthesis and maturation of rRNA, which is greatly affected by RNase III, as well as other RNAs, was indistinguishable in rnc rho strains as compared to rnc rho+ strains, thus suggesting that RNase III and rho do not complement one another in determining the 3' ends of RNA molecules. In rnc rho strains, however, the newly synthesized rRNA failed to accumulate. Thus, decay of rRNA could be the reason for the temperature sensitivity of the double mutant strains. These experiments suggest that RNase III and rho can both protect rRNA from degradation by cellular ribonucleases. They also point to the possibility that the nucleotide sequences involved in the determination of the 3' ends of RNA molecules by these two factors are not identical.  相似文献   

10.
11.
The 340-nucleotide RNA component of Saccharomyces cerevisiae RNase MRP is encoded by the single-copy essential gene, NME1. To gain additional insight into the proposed structure and functions of this endoribonuclease, we have extensively mutagenized the NME1 gene and characterized yeast strains expressing mutated forms of the RNA using a gene shuffle technique. Strains expressing each of 26 independent mutations in the RNase MRP RNA gene were characterized for their ability to grow at various temperatures and on various carbon sources, stability of the RNase MRP RNA and processing of the 5.8S rRNA (a nuclear function of RNase MRP). 11 of the mutations resulted in a lethal phenotype, six displayed temperature-conditional lethality, and several preferred a non-fermentable carbon source for growth. In those mutants that exhibited altered growth phenotypes, the severity of the growth defect was directly proportional to the severity of the 5.8S rRNA processing defect in the nucleus. Together this analysis has defined essential regions of the RNase MRP RNA and provides evidence that is consistent with the proposed function of the RNase MRP enzyme.  相似文献   

12.
13.
14.
15.
16.
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.  相似文献   

17.
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides are present. Here we investigated the importance of RNase H type I encoding genes for model organism Mycobacterium smegmatis. By performing gene replacement through homologous recombination, we demonstrate that each of the two presumable RNase H type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome without affecting the growth rate of the mutant. Further, we demonstrate that deletion of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally, we question the possibility of existence of RNase HI related alternative mode of initiation of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis as the first bacterial species, where function of RNase H type I has been found essential.  相似文献   

18.
It has long been known that Escherichia coli cells deprived of topoisomerase I (topA null mutants) do not grow. Because mutations reducing DNA gyrase activity and, as a consequence, negative supercoiling, occur to compensate for the loss of topA function, it has been assumed that excessive negative supercoiling is somehow involved in the growth inhibition of topA null mutants. However, how excess negative supercoiling inhibits growth is still unknown. We have previously shown that the overproduction of RNase HI, an enzyme that degrades the RNA portion of an R-loop, can partially compensate for the growth defects because of the absence of topoisomerase I. In this article, we have studied the effects of gyrase reactivation on the physiology of actively growing topA null cells. We found that growth immediately and almost completely ceases upon gyrase reactivation, unless RNase HI is overproduced. Northern blot analysis shows that the cells have a significantly reduced ability to accumulate full-length mRNAs when RNase HI is not overproduced. Interestingly, similar phenotypes, although less severe, are also seen when bacterial cells lacking RNase HI activity are grown and treated in the same way. All together, our results suggest that excess negative supercoiling promotes the formation of R-loops, which, in turn, inhibit RNA synthesis.  相似文献   

19.
20.
B Dichtl  A Stevens    D Tollervey 《The EMBO journal》1997,16(23):7184-7195
Hal2p is an enzyme that converts pAp (adenosine 3',5' bisphosphate), a product of sulfate assimilation, into 5' AMP and Pi. Overexpression of Hal2p confers lithium resistance in yeast, and its activity is inhibited by submillimolar amounts of Li+ in vitro. Here we report that pAp accumulation in HAL2 mutants inhibits the 5'-->3' exoribonucleases Xrn1p and Rat1p. Li+ treatment of a wild-type yeast strain also inhibits the exonucleases, as a result of pAp accumulation due to inhibition of Hal2p; 5' processing of the 5.8S rRNA and snoRNAs, degradation of pre-rRNA spacer fragments and mRNA turnover are inhibited. Lithium also inhibits the activity of RNase MRP by a mechanism which is not mediated by pAp. A mutation in the RNase MRP RNA confers Li+ hypersensitivity and is synthetically lethal with mutations in either HAL2 or XRN1. We propose that Li+ toxicity in yeast is due to synthetic lethality evoked between Xrn1p and RNase MRP. Similar mechanisms may contribute to the effects of Li+ on development and in human neurobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号