首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimorphic pattern of growth hormone (GH) secretion and somatic growth in male and female mammals is attributable to the gonadal steroids. Whether these hormones mediate their effects solely on hypothalamic neurons, on somatotropes or on both to evoke the gender-specific GH secretory patterns has not been fully elucidated. The purpose of this study was to determine the effects of 17beta-estradiol, testosterone and its metabolites on release of GH, GH-releasing hormone (GHRH) and somatostatin (SRIF) from bovine anterior pituitary cells and hypothalamic slices in an in vitro perifusion system. Physiological concentrations of testosterone and estradiol perifused directly to anterior pituitary cells did not affect GH releases; whereas, dihydrotestosterone and 5alpha-androstane-3alpha, 17beta-diol increased GH. Perifusion of testosterone at a pulsatile rate, and its metabolites and estradiol at a constant rate to hypothalamic slices in series with anterior pituitary cells increased GH release. The androgenic hormones increased GHRH and SRIF release from hypothalamus; whereas, estradiol increased GHRH but decreased SRIF release. Our data show that estradiol and the androgens generated distinctly different patterns of GHRH and SRIF release, which in turn established gender-specific GH patterns.  相似文献   

2.
To study structure-activity relationships of growth hormone-releasing hormone (GHRH), a competitive binding assay was developed using cloned porcine adenopituitary GHRH receptors expressed in human kidney 293 cells. Specific binding of [His1,125I-Tyr10,Nle27]hGHRH(1–32)-NH2 increased linearly with protein concentration (10–45 μg protein/tube). Binding reached equilibrium after 90 min at 30°C and remained constant for at least 240 min. Binding was reversible to one class of high-affinity sites (Kd = 1.04 ± 0.19 nM, Bmax = 3.9 ± 0.53 pmol/mg protein). Binding was selective with a rank order of affinity (IC50) for porcine GHRH (2.8 ± 0.51 nM), rat GHRH (3.1 ± 0.69 nM), [N-Ac-Tyr1, -Arg2]hGHRH(3–29)-NH2 (3.9 ± 0.58 nM), and [ -Thr7]GHRH(1–29)-NH2 (189.7 ± 14.3 nM), consistent with their binding to a GHRH receptor. Nonhydrolyzable guanine nucleotides inhibited binding. These data describe a selective and reliable method for a competitive GHRH binding assay that for the first time utilizes rapid filtration to terminate the binding assay.  相似文献   

3.
Galanin is a 29 amino acid peptide that was isolated and characterized from porcine intestinal extracts. The presence of galanin-like immunoreactivity in neuronal elements in the hypothalamus and median eminence suggested a role for it in the hypothalamic control of anterior pituitary function. A hypothalamic site of action of galanin to stimulate growth hormone (GH) release is suggested by our observation that doses as low as 50 picomoles when infused into the third cerebroventricle of conscious, unrestrained ovariectomized rats resulted in significantly elevated plasma levels of GH. This effect was specific for GH and was dose-related. The failure of galanin to alter GH release from dispersed, cultured anterior pituitary cells in vitro further suggests that endogenous galanin plays a neuromodulatory role at the level of the median eminence, possibly affecting the release of known GH-releasing and/or inhibiting factors.  相似文献   

4.
The effect of vasoactive intestinal peptide (VIP) on anterior pituitary hormone release was examined in a variety of in vitro preparations. Synthetic VIP was capable of stimulating increased prolactin (PRL) release from male rat hemipituitaries in doses as low as 10−9 M only when the enzyme inhibitor bacitracin was present in the incubation medium. Natural porcine VIP was similarly capable of stimulating PRL release, but only at higher doses (10−6 M). Additionally, synthetic VIP was capable of stimulating PRL release from dispersed anterior pituitary cells harvested from adult male and lactating female rats and from an enriched population of lactotrophs obtained by unit gravity sedimentation of similar dispersed cells from infantile female rats. No effect of VIP on luteinizing hormone, growth hormone or thyroid stimulating hormone release was seen. These findings taken in concert with the presence of VIP in the hypothalamus, pituitary and hypophyseal portal plasma of the rat suggest a physiological role for VIP in the control of PRL secretion.  相似文献   

5.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

6.
The effect of galanin (Gal), a 29-amino acid peptide widely distributed in mammalian CNS, was investigated in cultured pituitary cells of rats of different ages. Gal (0.1-10/microM) stimulated GH release in a concentration-dependent manner in 5-and 10-day-old rat pituitaries (EC50: 0.87 and 1.73/microM, respectively) but was ineffective (0.01-1/microM) or even inhibitory (10/microM) in 40-day-old male rat pituitaries. Gal (0.1-10/microM) was ineffective to alter stimulation of GH release induced by GHRH (10 nM) in 5-day-and 40-day-old rat pituitary cells, but Gal (1/microM) slightly inhibited (24%) it in 10-day-old rat pituitaries. Gal (1 and 10/microM) also inhibited GH secretion (45 and 58%, respectively) from 40-day-old pituitary cells when a lower GHRH dose (0.1 nM) was used for stimulation. The results of this study indicate that Gal has the ability to either stimulate or inhibit GH release from dispersed pituitary cells and that its effects are closely related to the age of the rats.  相似文献   

7.
8.
The action of prolactin (PRL) on the secretion of gonadotropin was investigated by means of a cell culture system of rat anterior pituitary gland. Anterior pituitary glands were removed from Wistar male rats, enzymatically digested and cultured. Luteinizing hormone (LH) release into medium was increased by adding PRL dose-dependently in the range between 10 ng/ml and 1 microgram/ml. This effect of PRL was further augmented by the presence of either gonadotropin-releasing hormone or estradiol. The intracellular LH concentration was also increased by PRL. PRL also caused an increase in follicle-stimulating hormone release into medium dose-dependently. In conclusion, PRL was shown to stimulate the secretion of gonadotropin at the pituitary level, thus suggesting a paracrine mode of PRL action in the anterior pituitary gland.  相似文献   

9.
10.
Pituitary gland growth hormone (GH) secretion is influenced by two hypothalamic neuropeptides: growth hormone-releasing hormone (GHRH) and somatostatin. Recent data also suggest that estrogen modulates GH release, particularly at the time of the preovulatory luteinizing hormone surge, when a coincident surge of GH is observed in sheep. The GHRH neurons do not possess estrogen receptor alpha (ERalpha), suggesting that estrogen does not act directly on GHRH neurons. Similarly, few somatotropes express ERalpha, suggesting a weak pituitary effect of estradiol on GH. It was hypothesized, therefore, that estradiol may affect somatostatin neurons to modulate GH release from the pituitary. Using immunocytochemical approaches, the present study revealed that although somatostatin neurons were located in several hypothalamic sites, only those in the arcuate nucleus (13% +/- 2%) and ventromedial nucleus (VMN; 29% +/- 1%) expressed ERalpha. In addition, we found that all neurons immunoreactive for somatostatin-14 were also immunoreactive for somatostatin-28(1-12). To determine whether increased GH secretion in response to estradiol is through modulation of GHRH and/or somatostatin neuronal activity, a final study investigated whether c-fos expression increased in somatostatin- and GHRH-immunoreactive cells at the time of the estradiol-induced LH surge in intact anestrous ewes. Estradiol significantly (P < 0.05) increased the percentage of GHRH (estradiol, 75% +/- 3%; no estradiol, 19% +/- 2%) neurons expressing c-fos in the hypothalamus. The percentage of somatostatin-immunoreactive neurons coexpressing c-fos in the estradiol-treated animals was significantly (P < 0.05) higher (periventricular, 44% +/- 3%; arcuate, 72% +/- 5%; VMN, 81% +/- 5%) than in the control animals (periventricular, 22% +/- 1%; arcuate, 29% +/- 3%; VMN, 31% +/- 3%). The present study suggests that estradiol modulates the activity of GHRH and somatostatin neurons but that this effect is most likely mediated through an indirect interneuronal pathway.  相似文献   

11.
The present study examines the role of cerebroventricular administered (IIIrd ventricle) galanin on LHRH and LH release in adult and immature male rats. In both age groups, galanin stimulated LHRH synthesis and release from the hypothalamus, leading to a higher release of pituitary LH which in turn increased plasma LH levels. Galantide, a galanin receptor blocker, on the other hand, drastically reduced hypothalamic LHRH and plasma LH while increasing pituitary LH. In vitro incubation of anterior pituitary cells with galanin followed by LHRH resulted in increased release of pituitary LH but not by galanin alone. Galantide exhibited no such effect either alone or with LHRH. These results indicate that galanin is an important regulator for both hypothalamic LHRH and hypophysial LH and its role is independent of age in the case of male rats.  相似文献   

12.
Regulation of leptin mRNA and protein expression in pituitary somatotropes.   总被引:3,自引:0,他引:3  
Leptin, the ob protein, regulates food intake and satiety and can be found in the anterior pituitary. Leptin antigens and mRNA were studied in the anterior pituitary (AP) cells of male and female rats to learn more about its regulation. Leptin antigens were found in over 40% of cells in diestrous or proestrous female rats and in male rats. Lower percentages of AP cells were seen in the estrous population (21 +/- 7%). During peak expression of antigens, co-expression of leptin and growth hormone (GH) was found in 27 +/- 4% of AP cells. Affinity cytochemistry studies detected 24 +/- 3% of AP cells with leptin proteins and growth hormone releasing hormone (GHRH) receptors. These data suggested that somatotropes were a significant source of leptin. To test regulatory factors, estrous and diestrous AP populations were treated with estrogen (100 pM) and/or GHRH (2 nM) to learn if either would increase leptin expression in GH cells. To rule out the possibility that the immunoreactive leptin was bound to receptors in somatotropes, leptin mRNA was also detected by non-radioactive in situ hybridization in this group of cells. In estrous female rats, 39 +/- 0.9% of AP cells expressed leptin mRNA, indicating that the potential for leptin production was greater than predicted from the immunolabeling. Estrogen and GHRH together (but not alone) increased percentages of cells with leptin protein (41 +/- 9%) or mRNA (57 +/- 5%). Estrogen and GHRH also increased the percentages of AP cells that co-express leptin mRNA and GH antigens from 20 +/- 2% of AP cells to 37 +/- 5%. Although the significance of leptin in GH cells is not understood, it is clearly increased after stimulation with GHRH and estrogen. Because GH cells also have leptin receptors, this AP leptin may be an autocrine or paracrine regulator of pituitary cell function.  相似文献   

13.
Aging exerts profound influences on the function of the hypothalamic-pituitary-testicular-axis. This work has been performed in order to verify whether, in male rats, the decreased secretion of LH and testosterone (T) occurring in old animals is reflected by modifications of luteinizing hormone-releasing hormone (LHRH) receptors at the level of the anterior pituitary and of the testes. To this purpose, the affinity constant (Ka) and the maximal binding capacity (Bmax) for the LHRH analog [D-Ser(tBu)6]des-Gly10-LHRH-N-ethylamide were evaluated, by means of a receptor binding assay, in membrane preparations derived from the anterior pituitary and testicular Leydig cells of male rats of 3 and 19 months of age. Serum levels of LH and T were measured by specific RIAs. The results obtained show that, in aged male rats, the concentration of pituitary LHRH receptors is significantly lower than that found in young animals. On the other hand, the concentration of LHRH binding sites is significantly increased on the membranes of Leydig cells of old rats. In no instance the Ka for the LHRH analog is significantly affected. Serum levels of LH and T are significantly lower in old than in young male rats. In conclusion, these results suggest that the reduced secretion of LH in old male rats may be linked, at least partially, to a decrease of the number of pituitary LHRH receptors. The impaired production of testosterone occurring in aged rats is accompanied by a significant increase of the number of testicular LHRH receptors, indicating that also the intratesticular mechanisms controlling testosterone release undergo significant alterations with aging.  相似文献   

14.
Summary We investigated the influences of growth hormone-releasing hormone (GHRH) on the percentage, size, and shape of somatotrophs in ectopic anterior pituitary tissue. Entire pituitary glands removed from 7-week-old male hamsters were placed beneath the renal capsules of 12-week-old hamsters that had been hypophysectomized and castrated 3 weeks previously. Beginning 6 days after each host had received a single allograft, each was injected subcutaneously twice daily with 4 g GHRH in 100 l of vehicle or 100 l of vehicle for 16 days. Six hosts in each group were killed by decapitation on day 17, 16 h after the last injection. Nine normal male hamsters were also decapitated and their pituitary glands were removed. Sections of anterior pituitary tissue were stained for GH and with hematoxylin. The percentage of anterior pituitary cells that stained for growth hormone was similar in the 3 groups. In contrast, somatotrophs in grafts had a smaller mean cross-sectional area than those observed in glands in situ. This effect was reversed by GHRH. Analysis of the shape of somatotrophs in both groups of grafts disclosed that they were less circular in cross-section than those in glands in situ. The results suggest that GHRH may not play a role in maintaining the percentage of somatotrophs among anterior pituitary cells, but that it does play a role in maintaining their size.  相似文献   

15.
Double labeling of dispersed anterior pituitary cells revealed the coexistence of galanin immunoreactivity with adrenocorticotropic hormone (ACTH) as well as prolactin. However, only laser confocal microscopy showed three different areas of immunoreactivity within the corticotroph cytoplasm, two of them for ACTH and galanin separately and the third containing both immunoreactivities. To determine a possible relation between ACTH cells and galanin, 4-day cultures of anterior pituitary cells from female rats were examined by cell blot assay, and they showed ACTH release inhibition by 10−6Mgalanin. Furthermore, after 17 β-estradiol treatment to maximize lactotroph galanin releasein vitro,the cell blotting-assessed secretory level of corticotroph cells was very similar to that of cells in the presence of 10−6Mgalanin. In fact, immunoneutralization with galanin antiserum quenched the inhibitory effect of galanin on ACTH secretion. Our study suggests that locally produced galanin can modulate corticotropin release.  相似文献   

16.
Isolated pituitary cells from metestrous, ovariectomized (OVX), and ovariectomized-estradiol treated (OVX-EB) rats were employed to study the gonadotropin response to luteinizing hormone-releasing hormone (LHRH) challenge and to quantitate LHRH receptors, using a labeled LHRH analog. Ovariectomy (3–4 weeks post castration) resulted in a reduction of LHRH receptor concentration from 34.4 ± 2.1 in metestrous females to 14.3 ± 0.9 fmoles/106 cells. Concomitantly, the luteinizing hormone (LH) response to a near-maximal dose of LHRH (5 ng/ml) decreased from a 3-fold stimulation in intact females to 1.13-fold stimulation in cells from OVX rats. Replacement therapy with EB (50 ug/rat for 2 days) to OVX rats restored LH response and LHRH binding sites (a 2.5-fold stimulation in LH secretion and 32.0 ± 2.1 fmoles/106 cells, respectively). The LH response to LHRH stimulation was not altered after one day of EB treatment although the number of LHRH binding sites was increased. The changes in the number of LHRH binding sites were not accompanied by any alterations in the affinity of the LHRH analog (Kd ? 0.5 × 10?9M). It is concluded that variations in LHRH receptor number reflect the degree of pituitary sensitivity to LHRH and it may suggest that LHRH and estradiol modulation of gonadotropin release is mediated by these receptors.  相似文献   

17.
An examination of the binding characteristics of a large number of somatostatin analogues with respect to the five known somatostatin receptor subtypes has recently resulted in the discovery of several peptides with some selectivity for types 2, 3, and 4 and little affinity for type 1 or 5 receptor. A panel of these peptides has thus far implicated type 2 receptors in the inhibition of release of pituitary growth hormone and type 4 receptors in inhibiting pancreatic insulin release. In the present article, we have examined the inhibitory effects of the same group of peptides on in vivo rat gastric acid and pancreatic amylase release and binding to rat pancreatic acinar cells. The type 2-selective ligand NC-8–12 was a potent inhibitor of gastric acid release (EC50s in the 1.5 nM region) whereas the type 4-selective ligand, DC-23–99, elicited little response. However, some involvement of type 3 receptors could not be ruled out because the type 3-selective analoueg, DC-25–20, exhibited inhibitory effects at higher dose levels (EC50 > 10 nM). Conversely, the type 4 analogue was a potent inhibitor of amylase release (EC50 1.1 nM) whereas the type 3 analogue had no significant effects at doses tested. DC-23–99 also bound with high affinity to rat acinar cells (EC50 3.8 nM), whereas DC-25-20 exhibited more than 10-fold less affinity. Thus, these two major biological functions of somatostatin appear to be controlled by different receptors and, furthermore, effects on both endocrine and exocrine pancreas appear to be type 4 receptor mediated.  相似文献   

18.
A variety of neural factors can influence reproductive hormone secretion by neuromodulatory actions within the hypothalamus or neuroendocrine actions within the anterior pituitary gland. Passive immunoneutralization and antagonist administration protocols have suggested physiological roles for a number of these factors; however, both experimental approaches have severe technical limitations. We have developed novel methodology utilizing cytotoxin cell targeting with neuropeptides linked to the toxic A chain of the plant cytotoxin ricin. With this methodology we can target and destroy in vivo or in vitro cells bearing receptors for that peptide. Ricin A chain conjugated to atrial natriuretic peptide (ANP), a neuropeptide known to pharmacologically inhibit luteinizing hormone-releasing hormone (LHRH) release, was injected into the cerebroventricular system of intact, cycling rats and ovariectomized rats. Cytotoxin conjugate treatment significantly lengthened the estrous cycle. In ovariectomized rats the luteinizing hormone surge induced by steroid priming was completely inhibited. LHRH content of the median eminences of these rats was not significantly altered. These data suggest that ANP binding to clearance receptors in the hypothalamus displaces the C-type natriuretic peptide (CNP) from the shared clearance receptor, making more CNP available to inhibit LHRH release. In the absence of cells bearing the clearance receptor all available CNP binds to the ANPR-B receptor and exerts its effect via an inhibitory interneuron, since LHRH fibers are spared by this treatment.  相似文献   

19.
The effect of estradiol on anterior pituitary dopaminergic receptor content was studied in vivo and in vitro, in relation with the serum PRL secretion. A progressive and significant decrease in the number of these receptors was observed, a few hours before the serum release of PRL induced in ovariectomized females by a sequential treatment with different doses of estradiol benzoate. This decrease in the number of dopaminergic membrane receptors can be obtained as well in vitro, when anterior pituitaries, from ovariectomized rats, are incubated with 17 beta-estradiol. These results suggest that the stimulatory effect of estradiol on PRL secretion may be due, at least in part, to the direct "desensitization" to DA of anterior pituitary cells, which is produced by the decrease of dopaminergic receptor level.  相似文献   

20.
The effect of vasoactive intestinal peptide (VIP) on anterior pituitary hormone release was examined in a variety of in vitro preparations. Synthetic VIP was capable of stimulating increased prolactin (PRL) release from male rat hemipituitaries in doses as low as 10−9 M only when the enzyme inhibitor bacitracin was present in the incubation medium. Natural porcine VIP was similarly capable of stimulating PRL release, but only at higher doses (10−6 M). Additionally, synthetic VIP was capable of stimulating PRL release from dispersed anterior pituitary cells harvested from adult male and lactating female rats and from an enriched population of lactotrophs obtained by unit gravity sedimentation of similar dispersed cells from infantile female rats. No effect of VIP on luteinizing hormone, growth hormone or thyroid stimulating hormone release was seen. These findings taken in concert with the presence of VIP in the hypothalamus, pituitary and hypophyseal portal plasma of the rat suggest a physiological role for VIP in the control of PRL secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号