首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. In order to determine what structural features of the oligosaccharide were required for fucosylation or where in the processing pathway fucosylation occurred, influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, [5,6-3H]fucose and [1-14C]mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the [14C]mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the [14C]mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the [3H]fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the [14C]mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.  相似文献   

2.
MDCK (Madin-Darby canine kidney) cells infected with the NWS strain of influenza virus incorporate 35SO4 into complex types of oligosaccharides of the N-linked glycoproteins. On the other hand, when these virus-infected MDCK cells are incubated in the presence of swainsonine, an inhibitor of the processing mannosidase II, approximately 40-80% of the total [35S]glycopeptides were of the hybrid types of structures. Thus, these sulfated, hybrid types of glycopeptides were completely susceptible to digestion by endoglucosaminidase H, whereas the sulfated glycopeptides from infected cells incubated without swainsonine were completely resistant to endo-beta-N-acetylglucosaminidase H. When virus-infected MDCK cells were incubated in the presence of castanospermine, an inhibitor of the processing glucosidase I, the N-linked glycopeptides contained mostly oligosaccharide chains of the Glc3Man7-9GlcNAc2 types of structures, and these oligosaccharides were devoid of sulfate. Structural analysis of these abnormally processed oligosaccharides produced in the presence of swainsonine or castanospermine indicated that they differed principally in the processing of one oligosaccharide branch as indicated by the structures shown below. They also differed in that only the swainsonine-induced structures were sulfated. These data indicate that removal of glucose units and perhaps other processing steps are necessary before sulfate residues can be added. (Formula: see text).  相似文献   

3.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

4.
The effects of various glycoprotein-processing inhibitors on the biosynthesis and secretion of N-linked glycoproteins was examined in cultured Madin-Darby canine kidney (MDCK) cells. Since incorporation of [2-3H]mannose into lipid-linked saccharides and into glycoproteins was much greater in phosphate-buffered saline (PBS) than in serum-supplemented basal medium (BME), most experiments were done in PBS. Castanospermine, an inhibitor of glucosidase I, caused the formation of glycoproteins having mostly Glc3Man7-9(GlcNAc)2 structures; deoxymannojirimycin, an inhibitor of mannosidase I, gave mostly glycoproteins with Man9(GlcNAc)2 structures; swainsonine, an inhibitor of mannosidase II, caused the accumulation of hybrid types of oligosaccharides. Castanospermine and swainsonine, either in PBS or in BME medium, had no effect on the incorporation of [2-3H]mannose or [5,6-3H]leucine into the secreted glycoproteins and, in fact, there was some increase in mannose incorporation in their presence. These inhibitors also did not affect mannose incorporation into cellular glycoproteins nor did they affect the biosynthesis as measured by mannose incorporation into lipid-linked saccharides. On the other hand in PBS medium, deoxymannojirimycin, at 25 micrograms/mL, caused a 75% inhibition in mannose incorporation into secreted glycoproteins, but had no effect on the incorporation of [3H]leucine into the secreted glycoproteins. Since deoxymannojirimycin also strongly inhibited mannose incorporation into lipid-linked oligosaccharides in PBS, the decreased amount of radioactivity in the secreted and cellular glycoproteins may reflect the formation of glycoproteins with fewer than normal numbers of oligosaccharide chains, owing to the low levels of oligosaccharide donor. However, in BME medium, there was only slight inhibition of mannose incorporation into lipid-linked saccharides and into cellular and secreted glycoproteins.  相似文献   

5.
A solubilized enzyme preparation from mung bean seedlings catalyzed the transfer of GlcNAc from UDP-GlcNAc to the Man5GlcNAc acceptor to form GlcNAc-Man5GlcNAc. In the presence of the mannosidase inhibitor, swainsonine, this oligosaccharide accumulated, but in the absence of this inhibitor, the oligosaccharide was processed further to smaller sized oligosaccharides with the release of radioactive mannose. The formation of GlcNAc-Man5GlcNAc required the presence of Man5GlcNAc, UDP-GlcNAc, Mn++ and swainsonine. The product, GlcNAc-Man5GlcNAc was characterized by chromatography on calibrated columns of Biogel P-4, and by various enzymatic digestions. These data indicate the presence of GlcNAc transferase I and mannosidase II in plants.  相似文献   

6.
In the preceding report we demonstrated that the expression of two developmentally regulated alpha-mannosidase activities is induced in Dictyostelium discoideum during its differentiation from single-cell amoebae to multicellular organism (Sharkey, D. J., and Kornfeld, R. (1991) J. Biol. Chem. 266, 18477-18484). These activities, designated membrane alpha-mannosidase I (MI) and membrane alpha-mannosidase II (MII), were shown to have several properties in common with rat liver Golgi alpha-mannosidases I and II, respectively, suggesting that MI and MII may play a role in the processing of asparagine-linked oligosaccharides in developing D. discoideum. In this study we analyzed the structures of the asparagine-linked oligosaccharides synthesized by D. discoideum at various stages of development to determine the timing and extent of asparagine-linked oligosaccharide processing. Cells were labeled with [2-3H] mannose, and then total cellular glycoproteins were digested with Pronase to generate glycopeptides that were fractionated on concanavalin A-Sepharose. Glycopeptides from each fraction were digested with endoglycosidase H, both before and after desulfation by solvolysis, and the released, neutral oligosaccharides were sized by high pressure liquid chromatography. At early stages of development, D. discoideum contain predominantly large high mannose-type oligosaccharides (Man9GlcNAc and Man8GlcNAc). Some of these are modified by GlcNAc residues attached beta 1-4 to the mannose-linked alpha 1-6 to the beta-linked core mannose (the "intersecting" position), as well as by fucose, sulfate, and phosphate. In contrast, the oligosaccharides found at late stages of development (18-24 h) have an array of sizes from Man9GlcNAc to Man3GlcNAc. These are still modified by GlcNAc, fucose, sulfate, and phosphate, but the percent of larger high mannose oligosaccharides that are modified with GlcNAc in the intersecting position decreases after 6 h of development, in parallel with the decrease in the intersecting GlcNAc transferase activity. Similarly, the changes in the size of asparagine-linked oligosaccharides synthesized during development correlate well with the appearance of MI and MII activities and suggest that these developmentally regulated alpha-mannosidase activities function in the processing of these oligosaccharides. This is supported further by the observation that oligosaccharide processing was inhibited in late stage cells labeled in the presence of either deoxymannojirimycin, an inhibitor of MI, or swainsonine, an inhibitor of MII.  相似文献   

7.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

8.
We have shown previously that the processing of asparagine-linked oligosaccharides in baby hamster kidney (BHK) cells is blocked only partially by the glucosidase inhibitors, 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin [Hughes, R. C., Foddy, L. & Bause, E. (1987) Biochem. J. 247, 537-544]. Similar results are now reported for castanospermine, another inhibitor of processing glucosidases, and a detailed study of oligosaccharide processing in the inhibited cells is reported. In steady-state conditions the major endo-H-released oligosaccharides contained glucose residues but non-glycosylated oligosaccharides, including Man9GlcNAc to Man5GlcNAc, were also present. To determine the processing sequences occurring in the presence of castanospermine, BHK cells were pulse-labelled for various times with [3H]mannose and the oligosaccharide intermediates, isolated by gel filtration and paper chromatography, characterized by acetolysis and sensitivity to jack bean alpha-mannosidase. The data show that Glc3Man9GlcNAc2 is transferred to protein and undergoes processing to produce Glc3Man8GlcNAc2 and Glc3Man7GlcNAc2 as major species as well as a smaller amount of Man9GlcNAc2. Glucosidase-processed intermediates, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, were also obtained as well as a Man7GlcNAc2 species derived from Glc1Man7GlcNAc2 and different from the Man7GlcNAc2 isomer formed in the usual processing pathway. No evidence for the direct transfer of non-glucosylated oligosaccharides to proteins was obtained and we conclude that the continued assembly of complex-type glycans in castanospermine-inhibited BHK cells results from residual activity of processing glucosidases.  相似文献   

9.
A melanoma proteoglycan model system has been used to examine the role of core protein asparagine-linked (N-linked) oligosaccharides in the transport and assembly of proteoglycan molecules. The use of agents which block discrete steps in the trimming and processing of core oligosaccharides (castanospermine, 1-deoxynojirimycin, N-methyldeoxynojirimycin, 1-deoxymannojirimycin, and swainsonine) demonstrates that removal of glucose residues from the N-linked oligosaccharides is required for the cell surface expression of a melanoma proteoglycan core protein and for the conversion of the core protein to a chondroitin sulfate proteoglycan. However, complete maturation of the oligosaccharides to a "complex" form is not required for these events. Treatment of M21 human melanoma cells with the glucosidase inhibitors castanospermine, 1-deoxynojirimycin, or N-methyldeoxynojirimycin results in a dose-dependent inhibition of glycosaminoglycan (GAG) addition to the melanoma antigen recognized by monoclonal antibody 9.2.27. In contrast, treatment with the mannosidase inhibitors 1-deoxymannojirimycin and swainsonine does not effect GAG addition. Identical results are obtained when the major histocompatibility complex class II antigen gamma chain proteoglycan is examined in inhibitor-treated melanoma and B-lymphoblastoid cells. These data, in conjunction with the known effects of the glucosidase and mannosidase inhibitors on the transport and secretion of other glycoproteins support the hypothesis that the addition, trimming, and processing of N-linked oligosaccharides is involved in the transport of certain proteoglycan core proteins to the site of GAG addition and to the cell surface.  相似文献   

10.
11.
An attempt was made to convert the N-glycan structures in Raphanus sativus seeds during germination with a view to develop a method for regulating the N-glycan structures using glycosidase inhibitors. The N-glycan structures of glycoproteins in the roots of seedlings germinated for three days were analyzed by hydrazinolysis followed by N-acetylation, pyridylamination and HPLC. Pyridylaminated sugar chains obtained in the absence of the inhibitors had plant type structures consisting of Man(3)FucXylGlcNAc(2)(M3FX), Man(5-9)GlcNAc(2)(high-Man) and GlcNAc(1-2)Man(3)FucXylGlcNAc(2)(GnM3FX and Gn2M3FX). When germinated in the presence of a glucosidase inhibitor (castanospermine or deoxynojirimycin), the amount of glucosyl high-Man-type structure increased and plant growth was inhibited. When germinated in the presence of a mannosidase inhibitor (swainsonine or deoxymannojirimycin), the amount of the high-Man-type structure increased and that of M3FX was low, and the growth was normal. In the presence of 2-acetamido 1, 2 di-deoxynojirimycin, those of GnM3FX and Gn2M3FX increased and the growth was normal. These results show that the N-glycan processing in both the endoplasmic reticulum (ER) and Golgi apparatus can be controlled artificially using glycosidase inhibitors, and that the glucosidase inhibitors could be useful for the study of the function of N-glycans in plants.  相似文献   

12.
In this study, we compared the effects of 2,6-dideoxy-2,6-imino-7-O-(beta-D-glucopyranosyl)-D-glycero-L-gulohep titol (MDL) to those of the glucosidase I inhibitor, castanospermine, on the purified processing enzymes glucosidases I and II. WE also compared the effects of these two inhibitors on glycoprotein processing in cell culture using influenza virus-infected Madin-Darby canine kidney cells as a model system. With the purified processing enzymes, castanospermine was a better inhibitor of glucosidase I than of glucosidase II, whereas MDL is more effective against glucosidase II than glucosidase I. In cell culture at the appropriate dose, MDL also preferentially affected glucosidase II. Thus, at 250 micrograms/ml MDL, the major [3H]glucose-labeled (or [3H]mannose-labeled) glycopeptide from the viral hemagglutinin was susceptible to endoglucosaminidase H, and the oligosaccharide liberated by this treatment was characterized as a Glc2Man7-9GlcNAc on the basis of size, resistance to digestion by glucosidase I (but sensitivity to glucosidase II), methylation analysis, and Smith degradation studies. These data indicate that at appropriate concentrations of MDL (250 micrograms/ml), one can selectively inhibit glucosidase II in Madin-Darby canine kidney cells. However, at higher concentrations of inhibitor (500 micrograms/ml), both enzymes are apparently affected. Since MDL did not greatly inhibit the synthesis of lipid-linked saccharides or the synthesis of protein or RNA, it should be a useful tool for studies on the biosynthesis and role of N-linked oligosaccharides in glycoprotein function.  相似文献   

13.
Swainsonine affects the processing of glycoproteins in vivo   总被引:4,自引:0,他引:4  
Rats, sheep and guinea pigs treated with swainsonine excrete 'high mannose' oligosaccharides in urine. The major rat and guinea pig oligosaccharide is (Man)5GlcNAc, whereas sheep excrete a mixture of oligosaccharides of composition (Man)2-5GlcNAc2 and (Man)3-5GlcNAc. The presence of these oligosaccharides suggests that Golgi alpha-D-mannosidase II as well as lysosomal alpha-D-mannosidase is inhibited by swainsonine resulting in storage of abnormally processed asparagine-linked glycans from glycoproteins. Altered glycoprotein processing appears to have little effect on the health of the intoxicated animal, but the accompanying lysosomal storage produces a disease state.  相似文献   

14.
Inhibitors of N-linked oligosaccharide processing are useful tools for studies on the biological function of the oligosaccharide structures in glycoprotein hormones. We have synthesized molecules of lutropin (LH) containing high-mannose- and hybrid-type oligosaccharides using rat gonadotroph-enriched primary cultures in the presence of castanospermine (a glucosidase I inhibitor) or swainsonine (a mannosidase II inhibitor), in order to compare the actions of these molecules with that of the hormone containing complex-type oligosaccharides in the activation of the receptor-adenylate cyclase system. Treatment of gonadotrophs with the above inhibitors caused an increase in the synthesis of highly basic LH molecules (pI 9.6-10.0), because addition of charged carbohydrate moieties to these molecules was prevented. Characterization of the oligosaccharide structure performed by enzymatic treatment (endoglycosidase H and neuraminidase) and the use of immobilized lectins (wheat germ agglutinin and Ricinus communis agglutinin-120) showed that these inhibitor-synthesized LH molecules contained high-mannose- and hybrid-type (asialo and sialylated) oligosaccharides. Their immunological properties were similar to that of complex-type oligosaccharide LH, but they had significantly higher receptor-binding ability in comparison with a sialylated complex-type oligosaccharide LH (about 12-fold) and an asialo complex-type oligosaccharide LH (about 3-fold). It was noted that the incompletely processed molecules were less potent than complex-type oligosaccharide LH in the activation of adenylate cyclase of Leydig cells, showing about 40-60% of the activity induced by the sialylated complex-type oligosaccharide molecule. The present data indicate that the inhibition of terminal processing of N-linked oligosaccharides by castanospermine and swainsonine impairs the full hormonal function of rat LH.  相似文献   

15.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

16.
Aspergillus fumigatus secretes a number of glycosidases into the culture medium when the cells are grown in a mineral salts medium containing guar flour (a galactomannan) as the carbon source. At least some of these glycosidases have been reported to be glycoproteins having N-linked oligosaccharides. In this study, we examined the effect of the glycoprotein processing inhibitor, castanospermine, on the structures of the N-linked oligosaccharides and on the secretion of various glycosidases. Cells were grown in the presence of various amounts of castanospermine; at different times of growth, samples of the media were removed for the measurement of enzymatic activity. Of the three glycosidases assayed, beta-hexosaminidase was most sensitive to castanospermine; and its activity was depressed 30 to 40% at 100 micrograms of alkaloid per ml and even more at higher alkaloid concentrations. On the other hand, beta-galactosidase activity was hardly diminished at castanospermine levels of up to 1 mg/ml, but significant inhibition was observed at 2 mg/ml. beta-Galactosidase was intermediate in sensitivity. Cells were grown in the presence or absence of castanospermine and labeled with [2-3H]mannose, [6-3H]glucosamine, or [1-3H]galactose to label the sugar portion of the glycoproteins. The secreted glycoproteins were digested with pronase to obtain glycopeptides, and these were identified on Bio-Gel P-4 (Bio-Rad Laboratories). The glycopeptides were then digested with endoglucosaminidase H to release the peptide portion of susceptible structures, and the released oligosaccharides were reisolated and identified on Bio-Gel P-4. The oligosaccharides from control and castanospermine-grown cells were identified by a combination of enzymatic and chemical studies. In control cells, the oligosaccharide appeared to be mostly Man8GlcNAc and Man9GlcNAc, whereas in the presence of alkaloid, the major structures were Glc3Man7GlcNAc and Glc3Man8GlcNAc. These data fit previous observations that castanospermine inhibits glucosidase I.  相似文献   

17.
Swainsonine is a potent inhibitor of lysosomal alpha-D-mannosidase, causes the production of hybrid glycoproteins, and is reported to produce a phenocopy of hereditary alpha-mannosidosis. We now report that the effects of swainsonine administration in the rat are different in two respects from those found in other animals thus far studied. Swainsonine caused the accumulation of oligosaccharide in kidney and urine but not in liver or brain. The accumulated oligosaccharides were mainly Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, Man(alpha 1-3)[Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4) GlcNAc, and Man(alpha 1-3)[Man(alpha 1-6)]Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc. Analogous branched Man4 and Man5 structures are found in pig and sheep tissues, but they are N, N'-diacetylchitobiose derivatives. The substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases were investigated because in one type of hereditary alpha-mannosidosis, that occurring in man, the major storage products are linear rather than branched oligosaccharides. The lysosomal enzyme showed much greater activity toward linear oligosaccharides than toward the branched oligosaccharides induced in the kidney by swainsonine. On the other hand, cytosolic alpha-D-mannosidase preferred the branched oligosaccharides, a result suggesting that this mannosidase might be inhibitable by swainsonine and that the enzyme might play a normal role in glycoprotein catabolism. Swainsonine was indeed found to inhibit this enzyme at relatively high concentrations (I50 at 100 microM swainsonine), and concentrations of this magnitude were in fact found in the cytosol of kidney of swainsonine-fed rats. The kidney cytosolic alpha-D-mannosidase levels were reduced in these rats and, more important, the accumulated oligosaccharides were present mainly in the cytosol rather than in lysosomes. These results point to possible involvement of cytosolic alpha-D-mannosidase in glycoprotein degradation in the rat.  相似文献   

18.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

19.
S Porwoll  H Fuchs  R Tauber 《FEBS letters》1999,449(2-3):175-178
Class I alpha-mannosidases are thought to exist exclusively as integral membrane proteins that play intracellulary an essential role in the N-glycan biosynthesis. Using [3H]Man9GlcNAc2 as a substrate, we were able to identify a soluble alpha-mannosidase in human serum that trims the substrate Man9GlcNAc2 to Man(5-8)GlcNAc2 with Man6GlcNAc2 being the major product. This serum mannosidase is Ca2+-dependent, sensitive to 1-deoxymannojirimycin but insensitive to the class II inhibitor swainsonine and, hence, belongs to class I mannosidases. The enzymatic properties of the serum class I mannosidase are similar to that of the membrane bound class I mannosidases Golgi-mannosidase IA and IB and Man9-mannosidase.  相似文献   

20.
Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号