首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. Water temperature is a key characteristic of stream ecosystems that is gaining scientific and managerial relevance as maximum temperatures in aquatic ecosystems increase worldwide.
2. To assess the effect of surface–subsurface water exchange on stream water temperature patterns, four alluvial reaches in the Tagliamento River basin (NE Italy), constrained by geomorphic knickpoints at the upper and lower end, and two to four hyporheic flowpaths within each reach, were continuously studied during summer 2007 and winter 2007–08. Water temperature was continuously monitored at the upstream and downstream knickpoints of the floodplains, as well as at discrete upwelling areas within each reach. Discharge and vertical hydraulic gradient were measured along the alluvial reaches, and the residence time and chemistry of upwelling water were assessed four times during the study.
3. Discharge variation along the study reaches revealed that massive hyporheic exchange occurred in all sites, ranging from 21% in reach 2–52% in reach 1. End member mixing analysis showed little influence of ground water, as almost all upwelling water was freshly infiltrated hyporheic water. Importantly, hyporheic exchange flows shaped surface temperature at the upwelling locations in all study reaches, providing potential thermal refugia for aquatic biota. At sites with highest hyporheic flow rates, net temperature change was also reflected at the floodplain scale.
4. The magnitude of the thermal change along a hyporheic flowpath was not related to the flowpath length but to the estimated 222Rn water age. Reduction in the diel thermal amplitude by hyporheic flows rather than net temperature change, reduced temperature extremes. Therefore, restoration activities to create thermal refugia should consider the role of hyporheic flows and enhance the exchange between surface and hyporheic waters.  相似文献   

3.
Summary 1. We studied the relative contributions of the magnitude and direction of vertical hydrological exchange, subsurface sediment composition and interstitial physicochemistry in determining the distribution of hyporheic invertebrates in the Kye Burn, a fourth order gravel‐bed stream in New Zealand. 2. In winter 2000 and summer 2001, we measured vertical hydrological gradient (VHG), dissolved oxygen, water temperature and water chemistry using mini‐piezometers, each installed in a different upwelling or downwelling zone. Next to every piezometer, a freeze core sample was taken to quantify the sediment, particulate organic matter and invertebrates. 3. Dissolved oxygen concentration at 25 cm was high on both occasions (>9 mg L?1) but was higher in winter than summer. Interstitial water temperature was higher in down than upwellings and was substantially higher in summer than winter. Other features of the subsurface sediments and interstitial nitrate–nitrite concentrations were similar on both occasions and in up and downwellings. Interstitial ammonium and soluble reactive phosphorous concentrations were higher in winter than summer and ammonium was higher in up than downwelling areas. 4. The proportion of fine sediment (63 μm–1 mm), sediment heterogeneity and VHG accounted for the greatest proportion of variance in invertebrate distributions in both summer and winter. 5. The hyporheos was numerically dominated by early instar leptophlebiid mayfly nymphs and asellotan isopods. Water mites were a taxonomically diverse group with 13 genera. Taxonomic diversity (Shannon–Weaver), but not taxon richness, was higher in upwelling areas, reflecting lower numerical dominance by a few taxa in these locations. 6. Sediment composition (particularly the amount of fine sediments) and vertical hydrological exchange determined the composition and distribution of the hyporheos. Patchiness in these factors is important in planning sampling regimes or field manipulations in the hyporheic zone.  相似文献   

4.
1. Feedbacks between vegetation and geomorphic processes can generate alternative stable states and other nonlinear behaviours in ecological systems, but the consequences of these biogeomorphic interactions for other ecosystem processes are poorly understood. In this study, we describe the changes in the hydrological, geomorphic and biogeochemical characteristics of the hyporheic zone of a Sonoran desert stream (Sycamore Creek, Arizona, U.S.A.) in response to a transition from an unvegetated gravel‐bed state to densely vegetated wetlands (ciénegas). 2. A survey of the entire length of Sycamore Creek indicated that ciénegas occupied c. 18% of the stream, and were disproportionately represented in constrained canyons rather than wide, unconstrained valleys. 3. Vegetated patches were characterized by low concentrations of dissolved oxygen (DO) and nitrate and high concentrations of carbon dioxide and methane in the hyporheic zone. In contrast to unvegetated areas, hyporheic DO in ciénegas exhibited no relationship with vertical hydraulic gradients. 4. Increases in hyporheic DO following removal of vegetation by floods supports the hypothesis that these reduced conditions were the result of biogeochemical and geomorphic changes associated with vegetation establishment. In locations where vegetation persisted, hyporheic DO exhibited no response to flooding; in sections where vegetation was removed hyporheic DO closely tracked post‐flood increases in surface stream DO. 5. Shallow sediments in vegetated patches were finer and more organic‐rich than in unvegetated patches, due to increased deposition during floods. Conservative tracer additions indicated that hydrological exchange between the surface stream and hyporheic zone was much lower in ciénegas than in gravel‐bed reaches. 6. Vegetation establishment in desert streams not only alters the physical and chemical characteristics of the hyporheic zone, but also the nature of interactions between surface and hyporheic subsystems.  相似文献   

5.
The influence of riffle-pool units on hyporheic zone hydrology and nitrogen dynamics was investigated in Brougham Creek, a N-rich agricultural stream in Ontario, Canada. Subsurface hydraulic gradients, differences in background stream and groundwater concentrations of conservative ions, and the movement of a bromide tracer indicated the downwelling of stream water at the head of riffles and upwelling in riffle-pool transitions under base flow conditions. Channel water also flowed laterally into the floodplain at the upstream end of riffles and followed a subsurface concentric flow path for distances of up to 20 m before returning to the stream at the transition from riffles to pools. Differences in observed vs predicted concentrations based on background chloride patterns indicated that the hyporheic zone was a sink for nitrate and a source for ammonium. The removal of nitrate in the streambed was confirmed by the loss of nitrate in relation to co-injected bromide in areas of downwelling stream water in two riffles. Average stream water nitrate-N concentrations of 1.0 mg/L were often depleted to <0.005 mg/L near the sediment-water interface. Consequently, an extensive volume of the hyporheic zone in the streambed and floodplain had a large unused potential for nitrate removal. Conceptual models based mainly on studies of streams with low nutrient concentrations have emphasized the extent of surface-subsurface exchanges and water residence times in the hyporheic zone as important controls on stream nutrient retention. In contrast, we suggest that nitrate retention in N-rich streams is influenced more by the size of surface water storage zones which increase the residence time of channel water in contact with the major sites of rapid nitrate depletion adjacent to the sediment-water interface.  相似文献   

6.
We investigated the effect of in-stream gravel extraction in a pre-alpine gravel-bed river on hyporheic invertebrate community, together with changes in the hyporheic geomorphology, physico-chemistry and biofilm activity. Hyporheic invertebrates were collected, together with environmental data, on seven sampling occasions from June 2004 to May 2005, at two river reaches—at the site of in-stream gravel extraction and at a site 2.5 km upstream. The hyporheic samples were taken from the river bed and from the gravel bars extending laterally from the stream channel. The invertebrate community was dominated by insect larvae (occasional hyporheos), followed by meiofauna (permanent hyporheos). Stygobionts were present at low species richness and in low densities. Gravel extraction from the stream channel led to changes in the patterns of water exchange between surface and subsurface and changes in the sediment composition at the site. Immediate reductions in density and taxonomic richness of invertebrates were observed, together with changes in their community composition. The hyporheic invertebrate community in the river recovered relatively fast (in 2.5 months) by means of density and taxonomic richness, while by means of community composition invertebrates needed 5–7 months to recover. The impact of fine sediments (<0.1 mm) on biofilm activity measured through ETS activity and hyporheic invertebrate density and taxonomic richness was strongly confirmed in this study.  相似文献   

7.
Abstract Recent studies of nutrient cycling in Sycamore Creek in Arizona, USA, suggest that a thorough understanding requires a spatially explicit, hierarchical approach. Physical configuration determines the path that water follows as it moves downstream. Water follows flowpaths through surface stream components, the hyporheic zone beneath the surface stream, and the parafluvial (sand bar) zone. Characteristic biogeochemical processes in these subsystems alter nitrogen (N) species in transport, in part as a function of available concentrations of N species. At several hierarchical levels, substrate materials are an important determinant of nitrogen dynamics in desert streams. Sand is present in bars of variable size and shape, each of which can be considered a unit, interacting with the surface stream. Groups of these stream-sandbar units form a higher level, the reach. At the next higher scale, sandy reaches (runs) alternate with riffles. Where flowpaths converge, rates of N transformation are high and, as a result, change in concentration is a non-linear function of flowpath length. Disturbance by flash floods alters sandbar configuration. Between floods, the interaction of subsurface and surface flowpaths shapes configuration in each, thus a self-organizing element of spatial structure exists. Sandy runs are dominated by subsurface processes and are likely to be net nitrifiers while riffles are dominated by surface flow and are nitrogen fixers. Whether a stream ecosystem retains nitrogen, or transports it to downstream recipient systems, or is a net emitter of gaseous forms of N, depends upon the dynamics of a spatial mosaic of interacting elements. An understanding of the net effect of this mosaic requires a spatially explicit, hierarchical, multi-scale approach.  相似文献   

8.
1. Large amounts of coarse particulate organic matter (CPOM) are buried in the sand and gravel beds of many rivers during spates. The effects of these patchily distributed resources on hyporheic invertebrates and water chemistry are poorly understood. Buried CPOM may provide local ‘hot-spots’ of food for hyporheic detritivores and their predators, alter nutrient supply to nearby sediment biofilms, and generate habitat for some invertebrates. 2. To examine potential short-term effects on hyporheic water chemistry, nutrient concentrations and invertebrate assemblage composition, leaf packs were buried in downwelling (surface water infiltrating the hyporheic zone) and upwelling (hyporheic water emerging to the surface) zones at two sites along a gravel-bed river in northern New South Wales. At one site, pits were excavated to simulate leaf burial (procedural control) and plastic ‘leaves’ were buried to test whether invertebrates might respond to leaves as refuges rather than food. Hyporheic CPOM, sediment size fractions, and interstitial silt content were also quantified at these sites. 3. Dry weights of naturally buried CPOM (leaf litter and wood fragments) varied substantially (0.6–71.7 g L–1 sediment). Amounts of CPOM did not differ between up- vs. downwelling zones or between sites. Hyporheic dissolved oxygen saturation was generally high (> 75%), and was lower in upwelling zones. The hyporheos was dominated taxonomically by water mites (≈ 20 species), whereas small oligochaetes were most abundant (40% of total abundance). Tiny instars of elmid beetle larvae and leptophlebiid mayfly nymphs were also common. Before experimental manipulation, faunal composition differed between up- and downwelling zones. In upwelling zones, bathynellaceans and blind peracarids were found, whereas small individuals of the surface benthos were common in samples from downwelling zones. This validated stratification of the experiment across zones of hydrologic exchange. 4. Twenty days after leaf burial, there was no effect of the treatments at either site on changes in most variables, including mean numbers of taxa and individuals per sample. Similarly, changes in faunal composition of the hyporheos in the treatments paralleled those in the controls except for a weak response in the buried leaves treatment in the upwelling zone at site 1. Artificially buried leaf litter does not seem to influence hyporheic water chemistry or fauna at these two sites. It is probable that naturally buried leaf litter is swiftly processed soon after entrainment and that repeating this experiment immediately after a flood may yield different results.  相似文献   

9.
Along a single stream riffle, there is a typical flow pattern in which surface water enters the hyporheic zone in a downwelling zone at the head of the riffle and hyporheic water returns to the stream surface in an upwelling zone at the tail of the riffle. Distinct patterns of physical and chemical conditions in the hyporheic zone are likely to determine patterns of microbial activity and occurrence of hyporheic fauna. Interstitial water and core samples were taken at three depths in the downwelling and upwelling zones of a single riffle in the Speed River, Southern Ontario, Canada. Physical and chemical characteristics of the hyporheic water, bacterial density, protein content, detritus content and faunal composition of the hyporheic sediment were analysed. The downwelling and upwelling zones differed significantly in temperature, pH, redox potential, dissolved oxygen and nitrate with significant positive correlations occurring among the latter three. There were no differences in bacterial density or detritus content between the two zones nor between depths in either zone, but protein content, considered to be a measure of biofilm biomass, was significantly higher in the downwelling zone. Total density of hyporheic fauna and the number of taxa decreased with increasing depth in both upwelling and downwelling zones, and were positively correlated with surface water characteristics (oxygen, temperature and nitrate), sediment protein content and detritus; however, only a weak correlation was found with zone. The composition of taxa differed between the two zones, and faunal distribution was correlated with dissolved oxygen, detritus, protein content and depth.  相似文献   

10.
Patch distribution of interstitial communities: prevailing factors   总被引:12,自引:1,他引:11  
1. Community structure of interstitial invertebrates was studied in the sediments of two gravel bars in a bypass section of the Rhone River (France), in relation to hydrological patchiness and to major geomorphological characteristics of the sampling areas. Hydrological patchiness was characterized by upweiling or downwelling zones while geomorphological characteristics were concerned mainly with position towards the head or tail of each bar, which presented different environmental conditions. 2. Longitudinal profiles of the two bars, at 0.5 and 1.0m below the substrate surface, were compared. At each station 10-l samples were taken using mobile standpipes and a Bou—Rouch pump. During low-water conditions, replicate samples were taken in both the head-bar and tail-bar regions to confirm the results. Physicochemical parameters were used to differentiate surface water from ground water (conductivity, alkalinity, silica, nitrates, sulphates and temperature) and to detect hydrological patterns. 3. Two different situations were observed within the gravel bars. In the first one, the upweiling zone was situated in the tail bar and downwelling zone in the head bar. The reverse was observed in gravel bar 2 where the head-bar region formed the upweiling zone and the tail-bar region formed the downwelling zone. 4. In the first situation, the distribution of interstitial assemblages corresponded with the observed hydrological patterns: epigean fauna characterized the downwelling zone and stygofauna characterized the upweiling zone. The interstitial fauna seemed to be strictly linked to the mode of water movement within the sediments. Hydrological patchiness therefore appeared to be an important factor for the structure of interstitial assemblages. 5. In the second case there was no relationship between the hydrological and the biological pattern. Epigean fauna and hypogean fauna were scattered all along the gravel bar. These results suggest that geomorphology is a second important factor governing the composition and structure of interstitial assemblages. A precise structure was obtained when hydrological and geomorphological characteristics were superimposed (case 1). When they were opposed (case 2) all the species responded according to their individual ecological requirements.  相似文献   

11.
Packman  Aaron I.  Salehin  Mashfiqus 《Hydrobiologia》2003,494(1-3):291-297
Hyporheic exchange is often controlled by subsurface advection driven by the interaction of the stream with sedimentary pore water. The nature and magnitude of the induced exchange flow is dependent on the characteristics of both the stream flow and the sediment bed. Fundamental hydrodynamic theory can be applied to determine general relationships between stream characteristics, sediment characteristics, and hyporheic exchange rates. When the stream bed is fine enough to allow application of Darcy's Law, as with sand beds, the induced advective exchange can be calculated from fundamental hydrodynamic principles. Comparison with a wide range of experimental results demonstrates the predictive capability of this theory. Coarser sediments such as gravels are more complex because they admit turbulent interactions between the stream and subsurface flows, which can produce considerable exchange even when the bed surface is flat and no flows are induced by the bed topography. Even for this case, however, scaling arguments can still be used to determine how exchange rates vary with stream and sedimentary conditions. Evaluation of laboratory flume experiments for a wide range of stream conditions, bed sediment types including sand and gravel, and bed geometries demonstrates that exchange scales with the permeability of the bed sediments and the square of the stream velocity. These relationships occur due to fundamental hydrodynamic processes, and were observed to hold over almost five orders of magnitude of exchange flux. Such scaling relationships are very useful in practice because they can be used to extend observed hyporheic exchange rates to different flow conditions and to uniquely identify the role of sedimentary conditions in controlling exchange flux.  相似文献   

12.
Water pathways through permeable riverbeds are multi-dimensional, including lateral hyporheic exchange flows as well as vertical (upwelling and downwelling) fluxes. The influence of different pathways of water on solute patterns and the supply of nitrate and other redox-sensitive chemical species in the riverbed is poorly understood but could be environmentally significant. For example, nitrate-rich upwelling water in the gaining reaches of groundwater-fed rivers has the potential to supply significant quantities of nitrate through the riverbed to surface waters, constraining opportunities to deliver the goals of the EU Water Framework Directive to achieve ‘good ecological status’. We show that patterns in porewater chemistry in the armoured river bed of a gaining reach (River Leith, Cumbria) reflect the spatial variability in different sources of water; oxic conditions being associated with preferential discharge from groundwater and reducing conditions with longitudinal and lateral fluxes of water due to water movement from riparian zones and/or hyporheic exchange flows. Our findings demonstrate the important control of both vertical and lateral water fluxes on patterns of redox-sensitive chemical species in the river bed. Furthermore, under stable, baseflow conditions (<Q90) a zone of preferential discharge, comprising 20 % of the reach by area contributes 4–9 % of the total nitrate being transported through the reach in surface water, highlighting the need to understand the spatial distribution of such preferential discharge locations at the catchment scale to establish their importance for nitrate delivery to the stream channel.  相似文献   

13.
The 'hyporheic refuge hypothesis' predicts that the hyporheic zone, the saturated sediments below and alongside rivers and streams, is a refuge from the scouring effects of spates for many aquatic invertebrates including water mites. We tested this hypothesis in two lateral gravel bars and two riffles in a subtropical Australian river by collecting water mites from the hyporheic zone at two depths (10 and 50 cm) at two 'pre-flood' sampling times before experimentally diverting water through the sites for 14 h to simulate a spate. Taxon richness of mites washigh (46 taxa) and dominated by the Prostigmata, with nearly half the species being new to science. Oribatids were also common at the four sites. Samples were collected twice during each 'spate', and again soon after flow was returned to normal. The experimental spate induced changes in the strength and even direction of subsurface-surface water exchange; however, these changes seldom persisted after the experiment, nor after a subsequent natural spate. The hyporheic refuge hypothesis was not supported by our water mite data. Neither during nor shortly after the experimental spates did we find more epigean (surface-dwelling) water mites in downwelling zones where surface streamwater enters the hyporheic zone, demonstrating that these mites were not using the hyporheic zone as a refuge at these locations. There was also no evidence for a 'wash out' effect, because hyporheic mitedensities did not significantly decline late in the spate. Our data indicate that floods of the low magnitude simulated in this study apparently do not pose a lasting disturbance for hypogean water mites. The fact that the same response was found at four sites indicates that the hyporheic refuge hypothesis may not always be an appropriate explanation for rapid post-flood recolonisation. Possibly, the use of the hyporheic zone as a refuge from floods may be dictated by the strength of the disturbance and substrate composition and stability.  相似文献   

14.
1. Experimental manipulations were performed to determine the biological, chemical and physical attributes that govern sediment respiration in the hyporheic zone of Sycamore Creek, a Sonoran Desert stream. 2. Hyporheic respiration per unit volume of sediment was inversely related to diameter of sediment particles, indicating that respiration is affected by availability of substrate for microbial colonization (i.e. sediment surfaces). Respiration rate per unit surface area on sediments was positively correlated with particle diameter, indicating greater metabolic activity of microbes on larger sediments. 3. Hyporheic respiration was more than twice as high in water collected from the surface flow than from subsurface flow. Further, hyporheic respiration was highest immediately following exposure of sediments to surface water and declined over time, presumably due to exhaustion of labile organic matter. 4. Microbial activity was stimulated by addition of algal leachate; however, amendments of leaf leachate had little effect. Respiration was also elevated with dextrose and leucine amendments, but not with inorganic nitrogen additions, indicating hyporheic respiration is carbon limited. 5. Water from the stream surface is probably enriched in labile organic matter derived from algae and stimulates respiration at points of hydrologic downwelling where surface water enters hyporheic sediments. The physical structure of sediments further affects metabolism by affecting the area available for microbial attachment.  相似文献   

15.
The relative effect of individual elements of restoration projects on stream–subsurface water exchange was studied by identifying elements that were most effective in increasing downwelling stream water (DSW) into subsurface environments using groundwater flow modeling. Several restoration projects studied in lowland streams involved riffle-pool construction, lateral gravel bar construction and channel re-meandering. Simulations using a homogeneous field of mean hydraulic conductivity that removed heterogeneity showed a large decline in DSW in the four restoration projects studied, suggesting that use of coarse sediments in construction initially increases stream–subsurface water exchange, but the effects may not persist in streams where fine sediments clog streambeds. In two riffle-pool construction projects studied, modification of the channel gradient showed a greater effect on DSW than the alteration of substrate texture. In the gravel bar construction site, modeling results indicated that the construction of a riffle-pool sequence along the bar had a greater effect than the construction of the gravel bar itself. In contrast in the channel re-meandering site, the combination of a greater sinuosity and a lower hydraulic head along the small riffles resulted in re-meandering having a greater effect than the associated riffle-pool construction. A simulation in which the floodplain sediments of low saturated hydraulic conductivity at the re-meandered site were replaced with sandy gravels increased DSW by 10 times. This modeling suggests that the addition of coarse sediments in combination with re-meandering would be required to significantly enhance stream–subsurface water exchange in reaches with fine-grained floodplain sediments. Designing the size and type of morphologic features constructed in restoration projects is somewhat flexible, and the use of modeling to simulate stream–groundwater interactions may help to enhance the hydrologic link with a stream and the subsurface environment in restored stream reaches.  相似文献   

16.
1. Flow permanence (the proportion of time that flowing water is present) strongly influences benthic invertebrate assemblages in ephemeral and intermittent river reaches. Effects of varying flow permanence on hyporheic invertebrate assemblages are not well understood, and have not previously been studied at large spatial scales. 2. We used a 52‐km long flow‐permanence gradient in the alluvial Selwyn River, New Zealand to assess hyporheic assemblage responses to variation in flow permanence and surface–subsurface exchange. The Selwyn mainstem consists of perennial and temporary reaches embedded in longer downwelling (losing) and upwelling (gaining) sections. 3. We predicted that hyporheic invertebrate diversity, density and assemblage stability would increase with increasing flow permanence. We further predicted that assemblage structure would be influenced by the relative contribution of downwelling and upwelling water at the reach‐scale. 4. Hyporheic invertebrates were collected at 15 river cross‐sections over a 13‐month period. As predicted, hyporheic taxon richness, density and assemblage stability varied directly with flow permanence. The distribution of taxa along the flow permanence gradient appeared to be related to desiccation resistance. However, it is possible that proximity to colonist sources also contributed to distribution patterns. 5. Taxon richness was significantly higher at sites in the gaining section compared with the losing section. Sites with high flow permanence in the gaining and losing sections supported distinct hyporheic assemblages, characterised by amphipods and isopods in the gaining section, and ostracods, Hydra sp. and the mayfly Deleatidium spp. in the losing section. 6. Results of the study suggest an expansion of the scope of the Hyporheic Corridor Concept to include large hyporheic flowpaths associated with unbounded alluvial plains rivers. Hyporheic assemblages in alluvial rivers are strongly influenced by large‐scale flow permanence gradients, large‐scale surface water–groundwater exchange, and their interactions.  相似文献   

17.
The ‘hyporheic refuge hypothesis’ predicts that the hyporheic zone, the saturated sediments below and alongside rivers and streams, is a refuge from the scouring effects of spates for many aquatic invertebrates including water mites. We tested this hypothesis in two lateral gravel bars and two riffles in a subtropical Australian river by collecting water mites from the hyporheic zone at two depths (10 and 50 cm) at two‘pre-flood’ sampling times before experimentally diverting water through the sites for 14 h to simulate a spate. Taxon richness of mites washigh (46 taxa) and dominated by the Prostigmata, with nearly half the species being new to science. Oribatids were also common at the four sites. Samples were collected twice during each ‘spate’, and again soon after flow was returned to normal. The experimental spate induced changes in the strength and even direction of subsurface-surface water exchange; however, these changes seldom persisted after the experiment, nor after a subsequent natural spate. The hyporheic refuge hypothesis was not supported by our water mite data. Neither during nor shortly after the experimental spates did we find more epigean (surface-dwelling) water mites in downwelling zones where surface streamwater enters the hyporheic zone, demonstrating that these mites were not using the hyporheic zone as a refuge at these locations. There was also no evidence for a ‘wash out’ effect, because hyporheic mitedensities did not significantly decline late in the spate. Our data indicate that floods of the low magnitude simulated in this study apparently do not pose a lasting disturbance for hypogean water mites. The fact that the same response was found at four sites indicates that the hyporheic refuge hypothesis may not always be an appropriate explanation for rapid post-flood recolonisation. Possibly, the use of the hyporheic zone as a refuge from floods may be dictated by the strength of the disturbance and substrate composition and stability.  相似文献   

18.
1. The ability of hyporheic sediments to exchange water and retain ammonium and phosphate in the Riera Major stream ,North-East Spain, under different discharge conditions was measured by conducting short-term nutrient and chloride additions. 2. The mean exchange coefficients from free-flowing water to the storage zone (k1) and vice versa (k2) were 0.82 × 10–4 s??1 and 7 × 10??3 s??1, respectively. The ratio of storage zone cross-sectional area to stream cross-sectional area (AS/A) averaged 2.8 × 10–2 and was negatively correlated with discharge (r = –0.85, d.f. = 13, P < 0.001). 3. The percentage of hyporheic zone water which came from surface water varied as a function of discharge and hyporheic depth, ranging between 33% and 95% at 25 cm depth, and between 78% and 100% at 10 cm depth. 4. The nutrient retention efficiency in the hyporheic zone at 10 cm depth measured as uptake length (Swh) was less than 3.3 cm for ammonium and 37 cm for phosphate. Higher nutrient retentions were measured in the sediments at 10 cm depth than at 25 cm, indicating that near-surface sediments were involved more actively in phosphate retention than the deeper hyporheic sediments. The lack of ammonium at any depth of the hyporheic zone showed that ammonium was very rapidly taken up in the surfacial sediments.  相似文献   

19.
Environmental flow releases have been advocated as a useful rehabilitation strategy for improving river condition but assessments of their success have typically focused on surface water quality and biota. In this study, we investigated the impacts of an environmental flow release on water temperature, conductivity, dissolved oxygen, and nitrate concentrations in surface and subsurface (hyporheic) water at upwelling and downwelling zones in three sites along the Hunter River, New South Wales, Australia. We hypothesised that the flow pulse would ‘flush’ the sediments with oxygenated water, stimulating hyporheic microbial activity and nitrification, enhancing nitrate concentrations over time. Surface and subsurface samples were collected before, 7 days after, and 49 days after an environmental flow release of 5000 Ml for a period of 3 days. No lasting effects on dissolved oxygen or conductivity were evident at most sites although dissolved oxygen declined over time at the downwelling site at Bowmans Crossing. At the downwelling zones at all sites, hyporheic nitrate concentrations declined initially following the release, but then rose or leveled off by Day 49. This initial drop in concentration was attributed to flushing of nitrate from the sediments. At two sites, nitrate concentrations had increased by Day 49 in the upwelling zones while at the third site, it fell significantly, associated with very low dissolved oxygen and likely reductive loss of nitrate. Electrical conductivity data indicate that potential inputs of agriculturally enriched groundwater may contribute to the nitrogen dynamics of the Hunter River. This study highlights the spatial heterogeneity that occurs in the hyporheic zone within and among sites of a regulated river, and emphasises the need for multiple-site surveys and an understanding of groundwater dynamics to assess physicochemical responses of the hyporheic zone to environmental flow releases.  相似文献   

20.
The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号