首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The effects of cytokinins on the different branches of the indole alkaloid pathway were investigated in Catharanthus roseus cell cultures. Addition of zeatin to a 2,4-dichlorophenoxyacetic acid-containing medium decreased tryptamine levels and increased the bioconversion of secologanin to ajmalicine. Zeatin also enhanced the geraniol-10 hydroxylase activities and modified the indole alkaloid pattern. The results are discussed in the light of previous works showing that cytokinins have a positive effect on indole alkaloid accumulation in some lines of C. roseus.Abbreviations BSTFA bis(trimethylsilyl) trifluoroacetamide - CK cytokinin - 2,4-D 2,4-dichlorophenoxyacetic acid - dw dry weight - G-10H geraniol-10 hydroxylase - NAA naphthaleneacetic acid - SE standard error - TDC tryptophan decarboxylase - Z zeatin  相似文献   

2.
长春花激素完全适应型细胞的生长和阿玛碱合成特性   总被引:1,自引:0,他引:1  
从长春花激素依赖型细胞系(C20D)筛选出一种激素完全适应型的细胞系(C20hi),考察了两种细胞生长、阿玛碱合成和引吲哚生物碱生物合成相关的酶的活性,结果表明:在生长培养基上二生长无显差异,而C20hi细胞平均阿玛碱含量是C20D的31.9倍,在生产培养基上C20hi细胞生长较C20D快,C20hi平均阿玛碱含量是C20D的18.4倍。通过比较生产和生长培养基中C20hi细胞的色氨酸脱羧酶、异胡豆苷合酶和long牛儿醇-10-脱氢酶活性,发明,通过5年的继代培养,激素完全适应型细胞系C20hi的阿玛碱含量是比较稳定的。  相似文献   

3.
从长春花激素依赖型细胞系(C20D)筛选出一种激素完全适应型的细胞系(C20hi),考察了两种细胞生长、阿玛碱合成和与吲哚生物碱生物合成相关的酶的活性,结果表明:在生长培养基上二者生长无显著差异,而C20hi细胞平均阿玛碱含量是C20D的31.9倍,在生产培养基上C20hi细胞生长较C20D快,C20hi平均阿玛碱含量是C20D的18.4倍.通过比较生产和生长培养基中C20hi细胞的色氨酸脱羧酶、异胡豆苷合酶和牛儿醇-10-脱氢酶活性,发现在生产培养基中培养细胞的3种酶活性均显著高于生长培养基,但与阿玛碱积累没有密切关系.研究结果还表明,通过5年的继代培养,激素完全适应型细胞系C20hi的阿玛碱含量是比较稳定的.  相似文献   

4.
The role of glucose in ajmalicine production by Catharanthus roseus was investigated in the second stage of a two-stage batch process. Activities of tryptophan decar-boxylate (TDC) and anthranilate synthase (AS), two enzymes In the pathway leading to ajmalicine, were higher after induction with 40 g/L glucose than after induction with 60 or 80 g/L glucose. Experiments with different media containing mixtures of glucose and the nonpermeating osmotic agent xylose, and using an already induced culture as inoculum, revealed that a minimum amount of glucose is required to support ajmalicine production after enzyme induction. This requirement was not an osmotic effect. The relation between the glucose concentration and the specific ajmalicine production rate, q(p), was investigated in seven (fed-)batch cultures with constant glucose concentrations: 23, 29, 35, 53, 57, 75, and 98 g/L. In the cultures with a low glucose concentration (23, 29, and 35 g/L) the q(p) was 2.7-times higher than the cultures with 53 and 57 g/L, and almost six times higher than the cultures with a high glucose concentration (75 and 98 g/L). A glucose perturbation experiment (from 53 to 32 g/L) demonstrated that the ajmalicine production rate was adjusted without much delay. A kinetic equation is proposed for the relationship between the glucose concentration and q(p). Differences in enzyme induction and ajmalicine production at different glucose levels could not be explained by the intracellular concentrations of glucose, fructose, sucrose, or starch. (c) 1995 John Wiley & Sons Inc.  相似文献   

5.
Oxygen and nutrient limitation was investigated in order to identify the origin of a lower specific ajmalicine production in Catharanthus roseus cultures at high cell densities in an induction medium. The effect of oxygen limitation was explored by comparing two identically aerated and agitated high cell density bioreactor cultures with dissolved oxygen (DO) concentration of 15% and 85% of air saturation, with respect to alkaloid formation and related enzymes activities. Oxygen had an evident effect on ajmalicine production: in the high DO cultures production was more than 5 times higher than in the low DO cultures. The difference in ajmalicine production between high and low DO could not be explained by the enzyme activity profiles. Moreover, the productivity in the high density culture could not restored to the level of a low density culture (at a high DO) by increasing the DO alone. The effect of nutrient limitation was studied with response surface methodology in shake flask cultures. Nutrient limitation could not be demonstrated to be responsible for the productivity loss. Alkaloid and enzyme measurements in the shake flask cultures supported previous findings that the tryptamine pathway may regulate alkaloid production, provided that the terpenoid pathway is sufficiently active. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
The link between the growth stage and the production stage in a two-stage batch process was investigated using (filtered) inocula from different periods of the stationary phase of the growth cycle. In the production stage, ajmalicine production by Catharanthus roseus in a 3-L stirred tank reactor was induced with a high glucose concentration (80 g/L). Ajmalicine production in cultures started with cells from the late stationary phase was five times higher than in cultures started with cells from the early stationary phase. After transfer to the production stage, cells from the early stationary phase showed a transient increase in respiration and enzyme induction, followed by culture browning. In contrast, cells in the late stationary phase showed a typical induction pattern: constant respiration, and permanent enzyme induction. A striking similarity between the geraniol-10-hydroxylase (G10H) activity and the ajmalicine accumulation profile could be observed in all cultures, suggesting that G 10H regulated ajmalicine production in this investigation. The intracellular nitrate concentration was significantly higher in the inoculum showing a high ajmalicine production than in the inoculum with a low production. Consequently, nitrate may act as a marker for the start of the production stage: as soon as the nitrate is depleted in the growth medium secondary metabolism can be induced. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Cells of Catharanthus roseus (L.) G. Don were genetically engineered to over-express the enzymes strictosidine synthase (STR; EC 4.3.3.2) and tryptophan decarboxylase (TDC; EC 4.1.1.28), which catalyze key steps in the biosynthesis of terpenoid indole alkaloids (TIAs). The cultures established after Agrobacterium-mediated transformation showed wide phenotypic diversity, reflecting the complexity of the biosynthetic pathway. Cultures transgenic for Str consistently showed tenfold higher STR activity than wild-type cultures, which favored biosynthetic activity through the pathway. Two such lines accumulated over 200 mg · L−1 of the glucoalkaloid strictosidine and/or strictosidine-derived TIAs, including ajmalicine, catharanthine, serpentine, and tabersonine, while maintaining wild-type levels of TDC activity. Alkaloid accumulation by highly productive transgenic lines showed considerable instability and was strongly influenced by culture conditions, such as the hormonal composition of the medium and the availability of precursors. High transgene-encoded TDC activity was not only unnecessary for increased productivity, but also detrimental to the normal growth of the cultures. In contrast, high STR activity was tolerated by the cultures and appeared to be necessary, albeit not sufficient, to sustain high rates of alkaloid biosynthesis. We conclude that constitutive over-expression of Str is highly desirable for increased TIA production. However, given its complexity, limited intervention in the TIA pathway will yield positive results only in the presence of a favorable epigenetic environment. Received: 12 June 1997 / Accepted: 24 October 1997  相似文献   

8.
The productivity of several transgenic cell lines of Catharanthus roseus was monitored over a period of 30 months. The transgenic cultures were obtained by Agrobacterium-mediated transformation of leaf explants with constructs containing recombinant versions of the endogenous Str and Tdc genes, which, respectively, encode strictosidine synthase (STR) and tryptophan decarboxylase (TDC). The expression of these transgenes and the -glucuronidase marker gene were also measured periodically, at the enzymatic level, during this time. Cultures were maintained in selective medium containing either hygromycin or kanamycin and showed GUS activity in the presence of X-gluc, indicating that they carried functional transgenes. The activities of STR and TDC varied greatly over time, occasionally falling to levels not significantly different from those of non-transgenic cultures, and showed susceptibility to the composition of the culture medium. Despite maintaining their transgenic character, the cell lines gradually lost the ability to accumulate terpenoid indole alkaloids (TIAs). The diversity of alkaloids produced was also negatively affected by long-term subculture. We conclude that a strategy of indirect selection, such as the use of antibiotic-resistance genes, is insufficient to maintain the concerted expression of TIA-pathway elements necessary for high productivity.  相似文献   

9.
Three unselected cell lines of C. roseus maintained on a growth-associated alkaloid production medium were studied over a period of 2 to 5.5 years for the stability of alkaloid production (serpentine and ajmalicine). Large fluctuations in the total alkaloid content of 20-day-old cells were found for all three cell lines at each subculture over a two-year period. Growth rates increased during prolonged subculture and one cell line became unproductive after five years culture. By selection of small autofluorescent aggregates, high alkaloid production was restored in this cell line, while the parent line was found to be unresponsive to alkaloid induction treatments. The instability in both alkaloid production and spectrum and the loss of alkaloid productivity are discussed in relation to the selection pressures present during long-term maintenance of cell suspension cultures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - nHS n-heptane sulphonate  相似文献   

10.
Cell suspension cultures (cell line No 615) of Catharanthus roseus cv. Little Delicata responded to elicitor treatment by accumulating monoterpenoid indole alkaloids and phenolic compounds. The excretion of phenols into the culture medium resulted from the induction of the branch-point enzyme phenylalanine ammonia lyase. The accumulation of alkaloids, however, occurred several hours earlier than the elicitor-mediated induction of tryptophan decarboxylase through which shikimate pathway intermediates are channelled into tryptamine and related indole alkaloids. The results indicate that both pathways for phenol and indole alkaloid biosynthesis responded to elicitor treatment and that no obvious causal relationship between pathways could be deduced from this study.Abbreviations PAL phenylalanine ammonia lyase - TDC tryptophan decarboxylase Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

11.
12.
Plantlets were succesfully regenerated from shoot cultures of Rauwolfia serpentina initiated from auxillary meristems on medium containing BA (4.44 M) + NAA (0.54 M). Rooting was initiated in White's basal medium supplemented with NAA (0.54 M). Tissue culture derived piants of R. serpentina (RSTC) were similar to normal plants (RS) in their morphological characteristics and chemical consitution. The biomass of the RSTC plants was higher (47.11 gms) than the normal plant (18.23 gms) on a dry weight basis. Five RSTC plants were cloned and the cloned plants were similar in biomass and alkaloid content to the normal plant.Abbreviations BA benzyl adenine - NAA naphthalene acetic acid - MS Murashige and Skoog - TLC thin layer chromatography - HPLC high performance liquid chromatography - F.W. fresh weight - D.W. dry weight - RS normal field grown plant established from stem cuttings - RSTC tissue culture plants established from shoot cultures - R reserpine - Aj ajmalicine - A ajmaline - S serpentine  相似文献   

13.
Production of solasodine in callus cultures of Solanum laciniatum Ait. was examined under several culture conditions. The steroidal alkaloid was produced more actively in rapidly proliferating callus tissues cultured on PN medium. The alkaloid concentration in the tissue was about 0.05% (dry weight basis) during the first 5 weeks’ culture. The highest accumulation of the alkaloid per culture was obtained with 2,4-d concentration in the medium at 1~2 ppm. It is noteworthy that the alkaloid production was not inhibited by such high concentration of 2,4-d as up to 10 ppm in the medium. Supplementation of kinetin slightly increased the alkaloid production.  相似文献   

14.
TransgenicNicotiana tabacum L. Petit Havana SR1 F1-plants expressing tryptophan decarboxylase cDNA (tdc) fromCatharanthus roseus (L.) G. Don under the control of the CaMV 35S promoter and terminator exhibited tryptophan decarboxylase (TDC) enzyme activity and accumulated tryptamine. The plants with the highest TDC activity contained 19 pkat per mg of protein. The influence of transgenic expression oftdc on the activities of anthranilate synthase (AS) and chorismate mutase (CM) were examined in 10 transgenic tobacco plants. The specific activities of these two chorismate-utilizing enzymes were not significantly affected by expression oftdc, despite their important functions as branch point enzymes in the shikimate pathway. The results indicate that the normal route of tryptophan biosynthesis in plants is sufficient to supply a considerable amount of this essential amino acid for the biosynthesis of secondary metabolites. Despite their increased tryptamine content, the growth and development of the transgenic tobacco plants expressingtdc appeared normal.  相似文献   

15.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

16.
Two year old, transformed root cultures of Catharanthus roseus accumulate ajmalicine and catharanthine (0.57 and 0.36 mg g-1 DW, or 7.0 and 3.0 mg l-1, respectively). Changes in the concentration of the medium components, as well as the addition of hydrolytic enzymes and biotic elicitors, were used as strategies to increase these alkaloid yields. Regarding the components of the medium, the results obtained, when sucrose was raised from 3 to 4.5%, are noteworthy. The nitrogen source induced differential responses in the individual alkaloid yields. No net change in the alkaloid content was observed either with changes in the concentration of vitamins or macro-and micronutrients. Though the root culture only shows a limited response to elicitors, Aspergillus treatment and the use of macerozyme increased the accumulation of ajmalicine selectively, while the addition of methyl jasmonate increased the yield of both alkaloids.Abbreviations MeJa methyl jasmonate - mU milliunits  相似文献   

17.
In cell suspension cultures of Catharanthus roseus a rapid accumulation of secondary compounds (tryptamine, indole alkaloids, phenolics) was observed after transfer of the cells into special ‘induction’-media devoid of phosphate and other essential growth factors [11, 14]. The increase of product levels was suppressed in the presence of phosphate which was almost completely taken up from the medium and accumulated by the cells within 48 h after inoculation. The activities of tryptophan decarboxylase (TDC), the first enzyme in indole alkaloid biosynthesis, and of phenyl-alanine ammonia-lyase (PAL), the key enzyme of phenylpropanoid biosynthesis, were influenced differently by phosphate. Whereas the accumulation of phenolics and PAL activity were similarly inhibited by low concentration of phosphate, the medium-induced enhanced activity of TDC was not affected although the product pools were considerably reduced. Some consequences for the regulation of secondary metabolism will be discussed.  相似文献   

18.
The effect of the cell-inoculum size and the addition of conditioned medium on ajmalicine and catharanthine production were studied using immobilized Catharanthus roseus cells. Higher specific-uptake rates of ammonium, nitrate, and sugars were observed in the low-inoculum-density cultures (50 g FW/L) compared to the high-inoculum-density cultures (100 g FW/L). Alkaloid production was not correlated with the exhaustion of a particular nutrient from the medium. The high-inoculum-density cultures produced higher ajmalicine concentrations throughout the experiment. Catharanthine production was similar between the two inoculum-density cultures. The addition of conditioned medium to MS-production medium dramatically improved the production of ajmalicine and catharanthine. The addition of conditioned medium enhanced ajmalicine production from immobilized Catharanthus roseus cultures on day 15 by at least two- to fourfold compared to media without the conditioning factors. Catharanthine production was increased by nearly fivefold in cultures with conditioned medium compared to those without conditioned medium. The enhancing effects of conditioned medium on alkaloid production were attributed to an unidentified factor produced and secreted by suspension cultures of C. roseus. The presence of conditioned medium also decreased the sucrose hydrolysis rate. The ajmalicine concentration in these immobilized cell cultures was found to be a function of the fresh-weight concentration, irrespective of the inoculum density or the culture medium. The medium choice and the inoculum density determined how rapidly fresh weight was accumulated and thus, how quickly ajmalicine was produced. Ajmalicine production correlated positively with fresh-weight concentration, but catharanthine production was not correlated with fresh-weight concentration.  相似文献   

19.

Background and Aims

The Madagascar periwinkle (Catharanthus roseus) produces the monoterpenoid alkaloid vindoline, which requires a specialized cell organization present only in the aerial tissues. Vindoline content can be affected by photoperiod and this effect seems to be associated with the morphogenetic capacity of branches; this association formed the basis of the study reported here.

Methods

Vindoline-producing in vitro shoot cultures were exposed either to continuous light or a 16-h photoperiod regime. New plantlet formation and alkaloid biosynthesis were analysed throughout a culture cycle.

Key Results

In cultures under the photoperiod, the formation of new plantlets occurred in a more synchronized fashion as compared to those under continuous light. The accumulation of vindoline in cultures under the photoperiod occurred in co-ordination with plantlet formation, in constrast to cultures under continuous light, and coincided with a peak of activity of deacetylvindoline acetyl CoA acetyltransferase (DAT), the enzyme that catalyses the last step in vindoline biosynthesis. When new plantlet formation was blocked in cultures under the photoperiod by treatment with phytoregulators, vindoline synthesis was also reduced via an effect on DAT activity. No association between plantlet formation and other biosynthetic enzymes, such as tryptophan decarboxylase (TDC) and deacetoxyvindoline 4-hydroxylase (D4H), was found. Effects of light treatment on vindoline synthesis were not mediated by ORCA-3 proteins (which are involved in the induction of alkaloid synthesis in response to elicitation), suggesting that the presence of a different set of regulatory proteins.

Conclusions

The data suggest that vindoline biosynthesis is associated with morphogenesis in shoot cultures of C. roseus.Key words: Catharanthus roseus, deacetylvindoline acetyl CoA acetyltransferase, DAT, in vitro shoot cultures, morphogenesis, vindoline  相似文献   

20.
Summary More efficient bioreactors for the production and recovery of secondary metabolites from plant cell cultures are needed. Three factors that have the potential to increase productivity are adsorption in situ, elicitors, and cell immobilization. The effects of these factors on ajmalicine production from Catharanthus roseus are reported in this paper. Elicitation using autoclaved cultures of the mold, Phytophthora cactorum, stimulates a 60% increase in ajmalicine production. The response time to elicitor addition was under 11 h. Adsorption of ajmalicine from the extracellular medium with the neutral resin, Amberlite XAD-7, greatly enhanced the release of ajmalicine (less than 10% extracellular to 40%) with a 40% increase in total productivity. Immobilization in Caalginate beads resulted in a significant increase in the accumulation of ajmalicine in the medium. The effects of elicitation, adsorption and immobilization were synergistic. For a 23-day culture period the amount of ajmalicine in the medium for cells subjected to all three treatments was 90 mg/L compared to 2 mg/L for suspension cultures cultured under otherwise identical conditions. These results suggest that immobilized cell bioreactors may be feasible for continuous production of products normally stored intracellularly in vacuoles in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号