首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the wing imaginal disc, the decapentaplegic (dpp) gene is expressed in a stripe of anterior cells near the anterior-posterior compartment boundary, and it is required solely in these cells for the entire disc to develop. In some viable segment polarity mutants, alterations in dpp expression have been demonstrated that correlate with changes in wing morphology. To test the hypothesis that the abnormal patterns of dpp expression are responsible directly for the mutant phenotypes, we have expressed dpp in ectopic places in wing imaginal discs, and we have found that dpp is able to cause overgrowth and pattern duplications in both anterior and posterior compartments of the wing disc. The alterations of the anterior compartment are strikingly similar to those observed in some viable segment polarity mutants. Thus, ectopic dpp alone can account for the phenotype of these mutants. We also show that ectopic expression of the segment polarity gene hedgehog (hh) gives similar morphological changes and activates dpp expression in the anterior compartment. This strongly suggests that the organizating activity of hh is mediated by dpp. We propose that the expression of dpp near the anterior-posterior compartment boundary is directed by the interaction between patched and hh, and that dpp itself could act as a general organizer of the patterning in the wing imaginal disc.  相似文献   

2.
3.
J. L. Epps  J. B. Jones    S. Tanda 《Genetics》1997,145(4):1041-1052
Here we describe a new segment polarity gene of Drosophila melanogaster, oroshigane (oro). Identified as a dominant enhancer of Bar (B), oro is also recessive embryonic lethal, and homozygous oro embryos show variable substitution of naked cuticle with denticles. These patterns are distinctly similar to those of hedgehog (hh) and wingless (wg) embryos, which indicates that oro functions in determining embryonic segment polarity. Evidence that oro function is involved in Hh signal transduction during embryogenesis is provided by its genetic interactions with the segment polarity genes patched (ptc) and fused (fu). Furthermore, ptc(IN) is a dominant suppressor of the oro embryonic lethal phenotype, suggesting a close and dose-dependent relationship between oro and ptc in Hh signal transduction. oro function is also required in imaginal development. The oro(1) allele significantly reduces decapentaplegic (dpp), but not hh, expression in the eye imaginal disc. Furthermore, oro enhances the fu(1) wing phenotype in a dominant manner. Based upon the interactions of oro with hh, ptc, and fu, we propose that the oro gene plays important roles in Hh signal transduction.  相似文献   

4.
During Drosophila wing development, Hedgehog (Hh) signalling is required to pattern the imaginal disc epithelium along the anterior-posterior (AP) axis. The Notch (N) and Wingless (Wg) signalling pathways organise the dorsal-ventral (DV) axis, including patterning along the presumptive wing margin. Here, we describe a functional hierarchy of these signalling pathways that highlights the importance of competing influences of Hh, N, and Wg in establishing gene expression domains. Investigation of the modulation of Hh target gene expression along the DV axis of the wing disc revealed that collier/knot (col/kn), patched (ptc), and decapentaplegic (dpp) are repressed at the DV boundary by N signalling. Attenuation of Hh signalling activity caused by loss of fused function results in a striking down-regulation of col, ptc, and engrailed (en) symmetrically about the DV boundary. We show that this down-regulation depends on activity of the canonical Wg signalling pathway. We propose that modulation of the response of cells to Hh along the future proximodistal (PD) axis is necessary for generation of the correctly patterned three-dimensional adult wing. Our findings suggest a paradigm of repression of the Hh response by N and/or Wnt signalling that may be applicable to signal integration in vertebrate appendages.  相似文献   

5.
M. Sanicola  J. Sekelsky  S. Elson    W. M. Gelbart 《Genetics》1995,139(2):745-756
During development of the Drosophila adult appendage precursors, the larval imaginal disks, the decapentaplegic (dpp) gene is expressed in a stripe just anterior to the anterior/posterior (A/P) compartment boundary. Here, we investigate the genetic controls that lead to production of this stripe. We extend previous observations on leaky engrailed (en) mutations by showing that mutant clones completely lacking both en and invected (inv) activity ectopically express dpp-lacZ reporter genes in the posterior compartment, where dpp activity ordinarily is repressed. Similarly, patched (ptc) is also ectopically expressed in such posterior compartment en(-)inv(-) null clones. In contrast, these en(-)inv(-) clones exhibit loss of hedgehog (hh) expression. We suggest that the absence of dpp expression in the posterior compartment is due to direct repression by en. Ubiquitious expression of en in imaginal disks, produced by a hs-en construct, eliminates the expression of dpp-lacZ in its normal A/P boundary stripe. We identify three in vitro Engrailed binding sites in one of our dpp-lacZ reporter gene. Mutagenesis of these Engrailed binding sites results in ectopic expression of this reporter gene, but does not alter the normal stripe of expression at the A/P boundary. We propose that the en-hh-ptc regulatory loop that is responsible for segmental expression of wingless in the embryo is reutilized in imaginal disks to create a stripe of dpp expression along the A/P compartment boundary.  相似文献   

6.
Imaginal disks, the primordia of the adult appendages in Drosophila, are divided into anterior and posterior compartments. However, the developmental role of such compartments remains unclear. The expression of decapentaplegic (dpp), a pattern formation gene required for imaginal disk development, has the intriguing property of being expressed in a line at or near the boundary between these compartments. Here, we compare the distribution of dpp-driven reporter gene expression to the pattern of expression of the engrailed (en) gene, known to be required for the maintenance of the compartment boundary. Using confocal microscopy to obtain single cell resolution, we have determined that the majority of the en+ imaginal disk cells expressing the dpp-driven reporter genes about those cells expressing en, while a small percentage of dpp reporter gene expressing cells also express en. In posterior regions of en mutant disks, where compartmentalization is abnormal, we observe ectopic expression of the dpp-driven reporter genes. We conclude that the pattern of dpp expression in imaginal disks is delimited in part through the direct or indirect repression by engrailed. Our results lead us to question the widely held assumption that the anterior edge of en expression demarcates the A/P compartment boundary.  相似文献   

7.
8.
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.  相似文献   

9.
Drosophila limbs develop from imaginal discs that are subdivided into compartments. Dorsal-ventral subdivision of the wing imaginal disc depends on apterous activity in dorsal cells. Apterous protein is expressed in dorsal cells and is responsible for (1) induction of a signaling center along the dorsal-ventral compartment boundary (2) establishment of a lineage restriction boundary between compartments and (3) specification of dorsal cell fate. Here, we report that the homeobox gene msh (muscle segment homeobox) acts downstream of apterous to confer dorsal identity in wing development.  相似文献   

10.
11.
12.
13.
In wild-type Drosophila melanogaster larvae, the Ultrabithorax (Ubx) gene is expressed in the haltere imaginal discs but not in the majority of cells of the wing imaginal discs. Ectopic expression of the Ubx gene in wing discs can be elicited by the presence of Contrabithorax (Cbx) gain-of-function alleles of the Ubx gene or by loss-of-function mutations in Polycomb (Pc) or in other trans-regulatory genes which behave as repressors of Ubx gene activity. Several Ubx loss-of-function alleles cause the absence of detectable Ubx proteins (UBX) or the presence of truncated UBX lacking the homeodomain. We have compared adult wing phenotypes with larval wing disc UBX patterns in genotypes involving double mutant chromosomes carrying in cis one of those Ubx mutations and the Cbx1 mutation. We show that such double mutant genes are (1) active in the same cells in which the single mutant Cbx1 is expressed, although they are unable to yield functional proteins, and (2) able to induce ectopic expression of a normal homologous Ubx allele in a part of the cells in which the single mutant Cbx1 is active. That induction is conditional upon pairing of the homologous chromosomes (the phenomenon known as transvection), and it is not mediated by UBX. Depletion of Pc gene products by Pc3 mutation strongly enhances the induction phenomenon, as shown by (1) the increase of the number of wing disc cells in which induction of the homologous allele is detectable, and (2) the induction of not only a paired normal allele but also an unpaired one.  相似文献   

14.
Pattern formation along the anterior-posterior (A/P) axis of the developing Drosophila wing depends on Decapentaplegic (Dpp), a member of the conserved transforming growth factor beta (TGFbeta) family of secreted proteins. Dpp is expressed in a stripe along the A/P compartment boundary of the wing imaginal disc and forms a long-range concentration gradient with morphogen-like properties which generates distinct cell fates along the A/P axis. We have monitored Dpp expression and Dpp signalling in endocytosis-mutant wing imaginal discs which develop severe pattern defects specifically along the A/P wing axis. The results show that the size of the Dpp expression domain is expanded in endocytosis-mutant wing discs. However, this expansion did not result in a concomitant expansion of the functional range of Dpp activity but rather its reduction as indicated by the reduced expression domain of the Dpp target gene spalt. The data suggest that clathrin-mediated endocytosis, a cellular process necessary for membrane recycling and vesicular trafficking, participates in Dpp action during wing development. Genetic interaction studies suggest a link between the Dpp receptors and clathrin. Impaired endocytosis does not interfere with the reception of the Dpp signal or the intracellular processing of the mediation of the signal in the responder cells, but rather affects the secretion and/or the distribution of Dpp in the developing wing cells.  相似文献   

15.
Using monoclonal antibodies specific for their protein products, the expression of the Ubx, Antp, and Scr genes was examined in imaginal discs and central nervous systems of esc-Drosophila larvae. In esc-mutants, both the Ubx and Scr proteins are expressed at increased levels or in new locations in the leg discs. Ubx also is expressed in new locations in the posterior wing disc and in small groups of cells in the antenna disc. The Antp protein is expressed ectopically in the eye-antenna disc; however, obvious abnormal expression of Antp was not found in the thoracic imaginal discs. Particularly striking is the fact that a single disc, such as the mesothoracic leg, can show increased expression of both a more "anterior" homeotic gene (Scr) and a more "posterior" gene (Ubx). Ectopic expression of Ubx and Antp, but not of Scr, is seen in the central nervous system of mutant larvae. These results are discussed with respect to the adult esc-phenotype and the differential effects of esc mutations on early and late development.  相似文献   

16.
Boundary Element Associated Factor-32 (BEAF-32) is an insulator protein predominantly found near gene promoters and thought to play a role in gene expression. We find that mutations in BEAF-32 are lethal, show loss of epithelial morphology in imaginal discs and cause neoplastic growth defects. To investigate the molecular mechanisms underlying this phenotype, we carried out a genome-wide analysis of BEAF-32 localization in wing imaginal disc cells. Mutation of BEAF-32 results in miss-regulation of 3850 genes by at least 1.5-fold, 794 of which are bound by this protein in wing imaginal cells. Up-regulated genes encode proteins involved in cell polarity, cell proliferation and cell differentiation. Among the down-regulated genes are those encoding components of the wingless pathway, which is required for cell differentiation. Miss-regulation of these genes explains the unregulated cell growth and neoplastic phenotypes observed in imaginal tissues of BEAF-32 mutants.  相似文献   

17.
The segment polarity genes engrailed and wingless are expressed in neighboring stripes of cells on opposite sides of the Drosophila parasegment boundary. Each gene is mutually required for maintenance of the other's expression; continued expression of both also requires several other segment polarity genes. We show here that one such gene, hedgehog, encodes a protein targeted to the secretory pathway and is expressed coincidently with engrailed in embryos and in imaginal discs; maintenance of the hedgehog expression pattern is itself dependent upon other segment polarity genes including engrailed and wingless. Expression of hedgehog thus functions in, and is sensitive to, positional signaling. These properties are consistent with the non-cell autonomous requirement for hedgehog in cuticular patterning and in maintenance of wingless expression.  相似文献   

18.
The developing wing of Drosophila melanogaster was examined at larval and pupal stages of development to determine whether the anterior-posterior lineage boundary, as identified by lineage restrictions, was congruent with the boundaries defined by the expression of posterior-specific (engrailed, invected), and anterior-specific (cubitus interruptus-D) genes. The lineage boundary was identified by marking mitotic recombinant clones, using an enhancer trap line with ubiquitous beta-gal expression in imaginal tissues; clones of +/+ cells were identified by their lack of beta-gal expression. Domains of gene expression were localized using antibodies and gene specific lacZ constructs. Surprisingly, it was found that engrailed expression extended a small distance into the anterior lineage compartment of the wing blade, as identified with anti-en/inv mAb, anti-en polyclonal antiserum, or an en-promoter-lacZ insert, ryxho25. This anterior expression was not present in early third instar discs, but appeared during subsequent larval and pupal development. In contrast, the expression of cubitus interruptus-D, as identified using the ci-Dplac insert, appeared to be limited to the anterior lineage compartment. Thus, en expression is not limited to cells from the posterior lineage compartment, and en and ci-D activities can overlap in a region just anterior to the lineage compartment boundary in the developing wing. The lineage boundary could also be identified by a line of aligned cells in the prospective wing blade region of wandering third instar discs. A decapentaplegic-lacZ construct was expressed in a stripe several cells anterior to the lineage boundary, and did not define or overlap into the posterior lineage compartment.  相似文献   

19.
 The genital disc of Drosophila, which gives rise to the genitalia and analia of adult flies, is formed by cells from different embryonic segments. To study the organization of this disc, the expressions of segment polarity and homeotic genes were investigated. The organization of the embryonic genital primordium and the requirement of the engrailed and invected genes in the adult terminalia were also analysed. The results show that the three primordia, the female and male genitalia plus the analia, are composed of an anterior and a posterior compartment. In some aspects, each of the three primordia resemble other discs: the expression of genes such as wingless and decapentaplegic in each anterior compartment is similar to that seen in leg discs, and the absence of engrailed and invected cause duplications of anterior regions, as occurs in wing discs. The absence of lineage restrictions in some regions of the terminalia and the expression of segment polarity genes in the embryonic genital disc suggest that this model of compartmental organization evolves, at least in part, as the disc grows. The expression of homeotic genes suggests a parasegmental organization of the genital disc, although these genes may also change their expression patterns during larval development. Received: 4 February 1997 / Accepted: 22 May 1997  相似文献   

20.
Recessive mutations (dppdisk) in one region of the decapentaplegic (dpp) gene of Drosophila, which codes for a transforming growth factor-beta homolog, cause loss of distal parts from adult appendages. Different dppdisk alleles cause effects of different severity, the milder alleles removing distal parts and the more severe alleles removing progressively more proximal structures. In the wing disc derivatives, the most extreme dppdisk genotype removes the entire wing and leaves only a thorax fragment. We show that structures are lost in these mutants as a result of massive apoptotic cell death in the corresponding regions of the imaginal discs during the mid-third larval instar. The remaining disc fragments do not regenerate when cultured alone in the growth-permissive environment of the adult abdomen, but they can be made to regenerate by coculturing them with appropriate fragments of wild-type wing discs. This nonautonomous development is interpreted as showing that a product of dpp+, presumably the TGF-beta homolog, is secreted by the normal cells and can rescue the mutant cells in the mixed tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号