首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of soil moisture on penetration, development, and reproduction of Heterodera cajani on pigeonpea (cv. ICPL 87) was investigated in growth chambers held at 20 and 25 C, and in a greenhouse where temperature fluctuated between 25 and 32 C. Averaged across temperatures, the percentage of juveniles that penetrated roots was 34.3, 31.8, 8.8, and 3.7% at 24, 32, 16, and 40% soil moisture levels, respectively. Numbers of females per root system 4 weeks after infesting soil with second-stage juveniles was 79.6 at 24%, 65.3 at 32%, 26.1 at 16%, and 2.9 at 40% soil moisture. Nematode reproduction was greatest (P = 0.001) at 24% soil moisture and 25 C. Reproductive factor was 19.4 at 24%, 15.2 at 32%, 5.7 at 16%, and 0.5 at 40% soil moisture level. Nematode penetration, development, and reproduction at different moisture levels were greater (P = 0.01) at 25 and 25-32 C than at 20 C. Plant growth was retarded at 40% soil moisture and 20 C in comparison to that at 24 and 32% moisture levels and 25 C. This information on influence of temperature and soil moisture will be helpful in developing models for predicting changes in H. cajani densities in pigeonpea fields during rainy and postrainy dry seasons in the semi-arid tropics.  相似文献   

2.
From infestation of lettuce with preinfective females to egg deposition, populations of Rotylenchulus reniformis from Baton Rouge, Louisiana; Lubbock and Weslaco, Texas; and Mayaguez, Puerto Rico, required 41, 13, 7, and 7 days at 15, 20, 25, and 34 C, respectively. No nematode infection occurred at 10 C with any R. reniformis population, and the population from Puerto Rico did not reproduce at 15 C. Nematode survival was not influenced by temperature, since populations from Texas and Louisiana survived for 6 months without a host at - 5 , - 1 , 4, and 25 C. Survival of R. reniformis was substantially influenced by soil moisture. Soil moistures greater than 7% (< 1 bar) aided nematode survival at storage temperature of 25 C, whereas moisture adversely affected nematode survival below freezing. Soil moisture below 4% (> 15 bars) favored nematode survival below freezing but adversely affected nematodes in soils stored at 25 C. Soil moisture effects on nematode survival were less accentuated at 4 and 0 C.  相似文献   

3.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

4.
Meloidogyne chitwoodi populations from Tulelake, California; Ft. Hall, Idaho; Beryl, Utah; and Prosser, Washington, significantly (P < 0.05) reduced dry shoot weights of crested wheatgrass (Agropyron cristatum L., Gaertn. and A. desertorum, Fisch. ex Link, Schult.) cultivars Hycrest, Fairway, and Nordan in experiments conducted in a greenhouse and growth chamber. Shoot growth depression, root galling, and nematode reproduction indices were greatest (P < 0.05) on plants inoculated with 5,000 eggs/plant. Nematode populations from Tulelake, Ft. Hall, and Beryl significantly (P < 0.05) reduced the growth of the three grass cultivars at 15, 20, 25, and 30 C; the greatest reductions occurred at 20 and 25 C. There were significant differences in the virulence of the nematode populations at high (30 C) and low (15 C) soil temperatures. At 15 C, plant growth was reduced more by the Beryl and Tulelake than by the Ft. Hall population; whereas at 30 C, the Ft. Hall population was more virulent than the Beryl and Tulelake populations. Root galling and nematode reproduction were greater on plants inoculated with Beryl and Tulelake populations at 15 C than on plants inoculated with the Ft. Hall population, while the Ft. Hall population had the most pronounced effects at 30 C.  相似文献   

5.
Reproduction of Pratylenchus thornei on carrot disk cultures at different time periods after inoculation, temperature, and initial inoculum density was studied. At 25 C and with an initial inoculum of 25 females per disk, the final nematode population increased with increasing time after inoculation, although the populations after 25 and 50 days were not different. Nematode numbers increased by 1,255-fold and 3,619-fold at 75 and 100 days, respectively. Over 35 days incubation at 15, 20, 25, and 30 C, the nematode multiplied 1.8, 8.4, 10.5, and 0.4 times, respectively. The optimum temperature for reproduction was between 20 and 25 C, and the nematode life cycle was completed in about 25-35 days. Increasing nematode inoculum (25, 50, 100, 500, 1,000 nematodes per disk) increased the final nematode population but did not increase reproduction rate, the highest being 25.3 at an initial inoculum density of 100 nematodes per disk.  相似文献   

6.
A greater percentage of females than juveniles or males of P. penetrans penetrated celery roots grown in infested soil at 5, 18, or 30 C; the difference was greatest at 5 C. The time of initial penetration of alfalfa seedlings inoculated with single nematodes on water agar varied with temperature. Females penetrated the seedlings earlier and over a wider range of temperatures than did males or juveniles. The rate of penetration was highest for females. After initial penetration, the penetration rate decreased with time. At 13-28 C, approximately 80% of roots were penetrated by females and only 25-30% by males and juveniles by the end of the experiment.  相似文献   

7.
The effects of temperature and initial inoculum density of Meloidogyne incognita on soybean growth and nematode reproduction were investigated in greenhouse temperature tanks and in controlled-growth chambers. The interactions of initial inoculum density (Pi) and soil temperature in effects on shoot growth were adequately described by multiple-regression models. At the highest temperatures (30 or 32/28 C), moderate to high inoculum killed many plants. A Pi of 27,000 eggs/15-cm-diam pot retarded shoot growth at 26 C. Only the greatest Pi (81,000 eggs/15-cm pot) suppressed shoot growth at 18, 22, or 20/16 C. Inoculation with 3,000 or 9,000 eggs/plant resulted in heavier root systems at all temperatures except 30 C. At that temperature, 9,000 eggs suppressed root growth. At 18 and 26 C, a Pi of 81,000 eggs was required to retard root growth. Nematode reproduction was related directly to temperature and Pi except at a density of 81,000 eggs/15-cm pot.  相似文献   

8.
The influence of the vesicular-arbuscular mycorrhizal fungus Glomus intraradices (Gi) and superphosphate (P) on penetration, development, and reproduction of Meloidogyne incognita (Mi) was studied on the Mi-susceptible cotton cultivar Stoneville 213 in an environmental chamber at 28 C. Plants were inoculated with Mi eggs at planting or after 28 days and destructively sampled 7, 14, 21, and 28 days after nematode inoculation. Mi penetration after 7 days was similar in all treatments at either inoculation interval. At 28 days, however, nematode numbers were least in mycorrhizal root systems and greatest in root systems grown with supplemental P. The rate of development of second-stage juveniles to ovipositing females was unaffected by Gi or P when Mi was added at planting, but was delayed in mycorrhizal root systems when Mi was added 28 days after planting. Nematode reproduction was lower in mycorrhizal than in nonmycorrhizal root systems at both Mi inoculation intervals. Nematode reproduction was stimulated by P when Mi was added at planting, but was similar to reproduction in the low P nonmycorrhizal treatment when Mi was added 28 days after planting. Eggs per female were increased by P fertility when Mi was added at planting.  相似文献   

9.
The penetration, development, and reproduction of a California population of the sugarbeet cyst nematode, Heterodera schachtii, was observed on cultivars of cabbage (Brassica oleracea), phacelia (Phacelia tanacetifolia), buckwheat (Fagopyrum esculentum), oilseed radish (Raphanus sativus), and white mustard (Sinapis alba). With the exception of the nonhost, phacelia, all were readily penetrated by second-stage juveniles of H. schachtii. After 38 days at 25 C, no cysts were observed on phacelia cv. Angelia or on the oilseed radish cv. Nemex and Pegletta. Cyst production was low (<2.5 cysts/plant) on the buckwheat cv. Tardo and Prego and most of the oilseed radish cultivars. Cyst production was intermediate (5-14 cysts/plant) on most of the white mustard cultivars, and high on cabbage (20-110 cysts/plant). In microplot studies conducted over 133 days (approx. 450 degree-days, base 8 C), the reproductive index for H. schachtii was greater than 1.0 for cultivars of phacelia, oilseed radish, and white mustard as welt as in fallow treatments, indicating the need for further research on the use of these crops under field conditions.  相似文献   

10.
A degree-day model was derived to predict egg hatch for Criconemella xenoplax. Eggs collected from gravid females were incubated in distilled water at constant temperatures of 10-35 C. Sixty-six percent of all eggs hatched between 13 and 32 C, and 42% hatched at 10 C. All eggs aborted above 32.5 C. Between 25 and 32 C, 8.5 ± 0.5 days were required for egg hatch. Degree-day requirement for egg hatch at 10-30 C was estimated to be 154 ± 5 with a base of 9.03 ± 0.04 C. This base of 9 C was adopted in studies of the relationship between degree-days and nematode population increase on Prunus seedlings grown 9-11 weeks in a greenhouse. Degree-day accumulations were based upon daily averages from maximum and minimum air temperatures. Ratios of final to initial population densities exhibited an exponential pattern in relation to degree-day accumulations with proportionate doubling increment of 0.100 ± 0.049 every 139 ± 8 degree-days. These results provide a means of predicting nematode population increase under greenhouse conditions and a basis for choosing sampling intervals when evaluating nematode multiplication.  相似文献   

11.
The effect of temperature on pine wilt development in Scots pine (Pinus sylvestris) was examined in three experiments. Container-grown pines (4-6 years old) inoculated with 1,500 Bursaphelenchus xylophilus were incubated at constant temperatures in growth chamber for 8 weeks, then at a temperature range of 15-30 C in a greenhouse for 10-12 weeks. Nematode infection was greater, tree mortality was higher, and disease incubation was shorter at 32 and 30 C than at 25, 23, 18, and 11 C. Foliar symptoms developed more rapidly and uniformly at higher temperatures. Ninety-five percent of tree deaths at 32 and 30 C and 88% at 25 and 23 C occurred within the 8-week exposure to constant temperatures. Mortality at 18, 16, and 11 C occurred only after transfer to the greenhouse. Results indicate that pine wilt incidence is directly related and disease incubation period is inversely related to temperature and that high-temperature stress predisposes Scots pine to lethal infection by B. xylophilus.  相似文献   

12.
Reproduction and development of Pratylenchus penetrans were studied on genetically transformed ladino clover roots. Solitary females developing on transformed roots in nutrient gellan gum medium (pH 5.5) deposited 1.2, 1.5, 1.6, 1.8, and 2.0 eggs per day at the respective temperatures of 17, 20, 25, 27, and 30 °C. The number of eggs deposited was highly correlated with temperature. A reduction in egg-laying rates at the start of hatching was observed at all temperatures. Juvenile mortality was higher at 17 °C (50.4%), 20 °C (50.3%), and 30 °C (58.4%) than at 25 °C (34.6%) and 27 °C (37.6%). Life-cycle (egg deposition to egg deposition) duration was 46, 38, 28, 26, and 22 days at the respective temperatures. The developmental zero degrees (°C) and the effective accumulative temperatures (degree-days) required for hatching, female emergence, and onset of oviposition (completion of one generation) of P. penetrans were estimated to be 2.7 and 200, 4.2 and 548, and 5.1 and 564, respectively. Pratylenchus penetrans reproduces over a wide range of temperatures.  相似文献   

13.
The effect of temperature (10, 20, 25, 30, and 35 C) on attachment and development of Pasteuria penetrans on Meloidogyne arenaria race 1 was elevated in growth chambers. The greatest attachment rate of endospores of P. penetrans occurred on second-stage juveniles at 30 C. The bacterium developed more quickly within its host at 30 and 35 C than at 25 C or below. The development of the bacterium within the nematode female was divided into nine recognizable life stages, which ranged from early vegetative thalli to mature sporangia. Mature sporangium was the predominant life stage observed after 35, 40, 81, and 116 days at 35, 30, 25, and 20 C, respectively. The body width and length of M. arenaria females infected with P. penetrans were smaller initially than the same dimensions in uninfected females, but became considerably larger over time at 25, 30, and 35 C. This isolate of P. penetrans also parasitized and completed its life cycle in males of M. arenaria.  相似文献   

14.
The influence of temperature and olive root exudates on Heterodera mediterranea egg hatch and the effects of H. mediterranea on the growth of two olive cultivars (Arbequina and Picual) were investigated. Egg hatch occurred over a temperature range of 10 to 30°C and was optimal at 20 to 25°C. There were no differences in egg hatch between sterile deionized distilled water or root exudate dilutions (undiluted, diluted 1:1, and 1:2) of Arbequina and Picual at 20°C. Heterodera mediterranea reproduced on both olive cultivars in growth chambers at 25°C. Soil and root final nematode populations, as well as total number of cysts per plant and reproduction rate, were significantly higher in Arbequina than in Picual. Shoot dry and root fresh weights as well as increases of shoot height, trunk diameter, and numbers of nodes were significantly suppressed by infection with 10,000 eggs + second-stage juveniles/pot in Arbequina but not in Picual.  相似文献   

15.
1.
Thirty-seven Peucetia viridans egg sacs were incubated at 15, 17.5, 20, 25, 30, 32.5 or 35 °C. Hatching time was inversely proportional to temperature, and no hatching occurred at the extremes (15, 17.5 and 35 °C).  相似文献   

16.
Reproduction of the corn cyst nematode (Heterodera zeae) and its effect on growth of corn (Zea mays) was studied in plant growth chambers at 24, 27, 30, 33, and 36 C. Reproduction of H. zeae increased directly with increase in temperature from 24 to 36 C. Fifteen-cm-d pots of corn seedlings inoculated with a mixture of 5,000 eggs + J2 and maintained for 8 weeks in growth chambers contained an average of 7,042 cysts + females at 36 C, but only 350 cysts + females at 24 C. Fresh weights of plants without nematodes were highest at 27 C and lowest at 36 C. Nematodes suppressed plant fresh weight by an average of 30% at 27 C and by 27% at 33 C but did not suppress plant weight at 36 C. Heterodera zeae has the highest reported temperature optimum for reproduction of any cyst nematode.  相似文献   

17.
The effects of temperature on rates of development of Heterodera glycines egg and juvenile stages were examined as a basis for predicting generation times of the nematode on soybean. The relationship of temperature to H. glycines embryonic development between 15 and 30 C was described by a linear model, The calculated basal temperature threshold was 5 C. Thermal optimum for embryogenesis and hatch with low mortality was 24 C. Development proceeded to first-stage juvenile at 10 C and to second-stage juvenile at 15-30 C. Hatch occurred at 20-30 C. At 36 C, development proceeded to the four-cell stage, then the eggs died. The range of diurnal soil temperature fluctuation and accumulated degree-days between 5 and 30 C (DD5/30) had an impact on rate of development of juveniles in soybean roots. From early June to early July, H. glycines required 534 + 24 DD5/30 (4 weeks) to complete a life cycle in the field. During the midseason (July and August), life cycles were completed in 3 weeks and 429 ± 24 DD5/30 were accumulated. Late in the season (September to November), declining soil temperatures were associated with generation times of 4 weeks and slower rates of development.  相似文献   

18.
Florunner peanut and three soybean cultivars, Centennial, Gasoy 17, and Wright, were inoculated with 48-hour age cohorts of Meloidogyne arenari race 1 second-stage juveniles and placed in a growth chamber set to simulate early season (low temperature) and midseason (high temperature) conditions. Percentages of the initial inoculum penetrating roots 4 and 8 days after inoculation were 2-3 times higher in soybean cultivars than in peanut; 25% on susceptible soybean and 9% on peanut. Penetration and early development of M. arenaria were greater in the higher temperature environment. Penetration percentages were expressed as a function of cumulative degree-days by regression models. Development of M. arenaria 10, 20, and 30 days after inoculation was more rapid on peanut than on soybean. The resistant soybean cultivar Wright had slower development rates than did the other two soybean cultivars. Nematode growth and development were dependent on temperature. In greenhouse experiments, production of eggs by M. arenaria was more than 10 times greater on peanut than on susceptible soybean. The reproductive factor for Wright soybean was less than one, but plant growth parameters indicated that this cultivar was intolerant of M. arenavia.  相似文献   

19.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

20.
Currently there are 16 possible races for Heterodera glycines, and these are differentiated based on ability of a nematode population to develop on a set of four differential soybean genotypes. Because results are based on numbers of nematode females that develop to a specific stage rather than on the reproductive capability of these females, race determinations based on female indices may not represent results obtained after several reproductive cycles of H. glycines. Counting numbers of eggs and juveniles, and then developing corresponding indices, would allow reproduction to be considered in making race determinations. Our objectives were to compare the present race identification scheme for H. glycines based on female indices with those using egg and juvenile indices and to examine the effect of temperature on race designations using female, egg, and juvenile indices. Race designations for H. glycines populations from two locations in Illinois were determined at 20, 27, and 30 °C in a water bath. The numbers of females, eggs, and juveniles (at 19 days) were recorded, and an index based on each life stage was calculated. Race determinations based on female, egg, or juvenile indices were inconsistent when conducted at 20 °C, which demonstrates that this temperature is not suitable for identifying races of H. glycines. However race designations at 27 and 30 °C were consistent for all three indices. This indicates that counting females, eggs, or juveniles should be equally reliable when race determinations are conducted at these two temperatures, and choice of method would depend on investigator preference or research objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号