首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The soybean cyst nematode, Heterodera glycines, is one of the most economically important pathogens of soybean. Effective management of the nematode is often dependent on the planting of resistant soybean cultivars. During the past 40 years, more than 60 soybean genotypes and plant introductions (PI) have been reported as resistant to H. glycines. About 130 modern soybean cultivars registered in the United States are resistant to certain races of H. glycines. Several resistance genes have been identified and genetically mapped; however, resistance levels in many soybean cultivars are not durable. Some older cultivars are no longer resistant to certain H. glycines populations in many production areas, especially if a soybean monoculture has been practiced. Past soybean registration reports show that all resistant cultivars developed in public institutions from the mid-1960s to the present have been derived from five PIs. This narrow genetic background is fragile. To further complicate the issue, soybean-H. glycines genetic interactions are complex and poorly understood. Studies to identify soybean resistance genes sometimes have overlapped, and the same genes may have been reported several times and designated by different names. Nevertheless, many potential resistance genes in existing germplasm resources have not yet been characterized. Clearly, it is necessary to identify new resistance genes, develop more precise selection methods, and integrate these resistance genes into new cultivars. Rational deployment of resistant cultivars is critical to future sustained soybean production.  相似文献   

2.
Alternate planting dates and periodic destruction of the previous year''s soybean crop as well as 1-year bare fallow were used to establish a range of population densities ofHeterodera glycines for the subsequent year. Soybean cultivar Coker 156 (susceptible, moderately tolerant) was compared to cultivars Essex (susceptible, intolerant) and Bedford (resistant) to evaluate tolerance at different H. glycines population densities established through the previous year''s treatments. Yield of Coker 156 was consistently intermediate between yields of Bedford and Essex in 1986 and 1987. Yield of Essex was negatively correlated (P = 0.05) with preplant egg numbers of H. glycines in 1987, whereas yield of Bedford and Coker 156 were not related to nematode density. Reproduction of H. glycines was greater (P = 0.05) on the moderately tolerant Coker 156 than on either of the other cultivars.  相似文献   

3.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

4.
Nematodes produced in monoxenic culture are used for many research purposes. To maximize the number of Heterodera glycines produced in culture, 24 soybean cultivars (maturity groups 0-8) were evaluated for host suitability. A strain of H. glycines race 3, maintained in monoxenic culture on excised soybean root tips of cv. Kent, was inoculated into 20 petri dishes of each cultivar. The highest numbers of first-generation females per petri dish were produced on cultivars Bass, Williams 82, Kent, Proto, and Chapman, and the lowest on cultivars Lambert and Chesapeake. A diapause-like period with decreased nematode production was recorded on some cultivars but not others. Six generations of cultivation on CX 366 did not affect the number of females produced. The results indicated that soybean maturity group could not be used as a parameter for selecting the optimum cultivars for nematode production, and that only J2 petri dishes needed to be counted to determine a 60-female difference per petri dish among cultivars. This study demonstrated that H. glycines populations in monoxenic culture can be more than quadrupled by selection of an appropriate soybean cultivar.  相似文献   

5.
Growth room and field experiments were conducted to determine the influence of soil temperature and soybean phenology on dormancy induction of a North Carolina population of Heterodera glycines race 1. Three temperature regimes and two photoperiods to regulate plant phenology were investigated in growth rooms. H. glycines hatch was greatest from the 26 and 22 C (day and night) temperature treatment, intermediate at 22 and 18 C, and least from the decreasing regime (26 and 22 C, 22 and 18 C, and 18 and 14 C). More eggs hatched and greater nematode reproduction occurred on pod-producing soybeans than on those that remained vegetative. In the field study, hatching patterns were not different between depodded and naturally senescing soybeans nor between the different maturity groups of soybean cultivars (groups V through VIII). Egg hatch (9-16%) was greatest in August and September when mean soil temperatures were between 25 and 29 C. Hatch declined to 1% in vitro and was not detectable in the bioassay in November. Greatest nematode numbers were observed on the latest maturing cultivar (group VIII) and fewest on the cultivar which matured earliest (group V). Decreasing temperature appears to be more important than soybean phenology in dormancy induction of H. glycines.  相似文献   

6.
The effects of no-tillage (NT), conventional tillage (CT), and crop rotation on soybean yield and population dynamics of Heterodera glycines were compared during a 7-year study in a silty clay loam soil with 6% organic matter. Either H. glycines-resistant ''Linford'' soybean or susceptible ''Williams 82'' soybean was rotated with corn and grown on 76-cm-wide rows in both tillage systems. Soybean was planted in 1994, 1996, 1998, 1999, and 2000. Yield of Linford was significantly greater than Williams 82 in all years. Soybean yield was affected by tillage in 1999 and 2000. No-tillage production tended to support more reproduction (R = number of eggs at harvest/number of eggs at planting) on both cultivars. The largest R for Williams 82 were in 1998: 58.35 for NT plots and 11.78 for CT plots. For Linford, the largest R were 12.09 for NT plots in 1996, and 3.71 for CT in 1999. When corn was planted, R decreased more in NT. When soybean was planted in years subsequent to 1994, numbers of eggs at harvest (Pf) were greater for Williams 82 NT than for Williams 82 CT or Linford in both tillage systems; however, crop rotation with corn negated these population increases. The soil became suppressive to H. glycines in 1999 and was suppressive in 2000. After the 3 years of continuous soybean, Pf per 250 cm[sup3] soil were 2,870 for Williams 82 NT, 791 for Williams 82 CT, 544 for Linford NT, and 990 for Linford CT in 2000, compared with Pf of 13,100 for Williams 82 NT, 15,000 for Williams CT, 2,360 for Linford NT, and 2,050 for Linford CT in 1994. Describing population dynamics solely on the basis of R was not adequate, but also required independent examination of initial populations following overwintering and Pf after the growing season. Planting soybean either NT or CT in rotation with corn did not result in long-term increases in numbers of H. glycines eggs.  相似文献   

7.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

8.
Field experiments were conducted in 1982 and 1983 to assess interactions between Heterodera glycines and Pratylenchus scribneri on soybean in southern Illinois. Soybean cyst nematode susceptible cultivar Williams 79 and resistant cultivar Fayette were treated or not treated with aldicarb 15G. Initial population densities were 35 H. glycines cysts containing eggs, 100 P. scribneri, 30 Helicotylenchus pseudorobustus, 225 Paratylenchus projectus, and 85 Tylenchorhynchus martini per 250 cm³ soil in 1982, whereas in 1983 populations were 11 H. glycines cysts, 330 P. scribneri, and 620 H. pseudorobustus. In both years H. glycines populations increased on nontreated Williams 79, decreased on both treated and nontreated Fayette, and remained at initial levels on treated Williams 79. Recovery of P. scribneri per gram dry root was different between nontreated cultivars in 1982 but not in 1983. Aldicarb treatment suppressed soil and root populations of P. scribneri on both cultivars in both years. Populations of H. pseudorobustus, P. projectus, and T. martini at harvest indicated little population increase on either nontreated cultivar. In 1982 H. glycines caused yield suppression but P. scribneri did not, as differences in yield occurred between cultivars but not between aldicarb treatments. In 1983, however, there were no yield differences between cultivars, but aldicarb application resulted in yield increase in both cultivars. In 1983 the yield increase resulting from P. scribneri control was approximately 25%. No synergistic effect on yield was observed between H. glycines and P. scribneri.  相似文献   

9.
The reproductive potentials of Heterodera glycines (mixture of races 3 and 4 and unidentified races) and a tobacco cyst nematode Globodera tabacum solanacearum were studied in the field. The experiments involved four cultivars of soybean Glycine max and four cultivars of Nicotiana tabacum. The reproductive potential of the H. glycines population was high on Essex and Lee 74 soybean but low on Forrest and Bedford over the 3 years (1982-84) of continuous cropping. The reproductive potential of H. glycines was 12% on Forrest and 6% on Bedford in 1982 but increased to 37 and 35% in 1983 and to 71 and 41% in 1984, respectively, on these two cultivars. The reproductive potential of G. tabacum solanacearum was high on McNair 944 and Coker 319 tobacco cultivars and low on VA 81 and PD 4 over the 3 years of cropping. The reproductive potential of G. tabacum solanacearum on VA 81 and PD 4 was 18 and 17% in 1982, 7 and 16% in 1983, and 5 and 5% in 1984, respectively. The changes in reproductive potentials of H. glycines and G. tabacum solanacearum may be related to inherent genetic variability in the systems that control reproduction of the two cyst nematodes and nature of resistance incorporated in the soybean and tobacco cultivars.  相似文献   

10.
Seasonal multiplication and overwinter survival are density-dependent in Heterodera glycines. At low to moderate population densities, the nematode is capable of large population increases on susceptible soybean cultivars and high rates of oversummer or overwinter survival in the absence of a host. To improve estimates of H. glycines multiplication and survival rates, egg densities were monitored for 12 cropping sequences across 10 years. Log-linear regression analysis was used to describe and compare density-dependent relationships. Growing-season change in H. glycines egg densities was density-dependent for all crops (susceptible soybean, resistant soybean, and nonhost), with slope estimates for the density-dependent relationship greater for susceptible soybean compared with a non-host crop. Overwinter population change also was density-dependent, with similar declines in survival rates observed for all crops as population densities increased. Survival was greater following susceptible soybean compared with resistant soybean, with an intermediate rate of survival associated with non-host crops. Survival estimates greater than 100% frequently were obtained at low population densities, despite attempts to account for sampling error. Rates of growing-season multiplication and survival, when standardized for population density, declined with year of the study. Standardized overwinter survival rates were inversely related to average daily minimum temperature and monthly snow cover.  相似文献   

11.
Heterodera glycines, the soybean cyst nematode, is a major yield-limiting pathogen in most soybean production areas worldwide. Field populations of H. glycines exhibit diversity in their ability to develop on resistant soybean cultivars. Since 1970, this diversity has been characterized by a bioassay used to assign a race classification to a population. The value of the race scheme is reflected in the number and quality of resistant soybean cultivars that have been developed and released by soybean breeders and nematologists working in concert. However, the race scheme also has been misapplied as a means of studying H. glycines genotypes, in part due to the use of the term "race." For fungal and bacterial pathogen species, "race" can theoretically be applied to individuals of a population, thus allowing inference of individual genotypes. Application of a race designation to an individual egg or second-stage juvenile (J2) of H. glycines is not possible because a single J2 cannot be tested on multiple hosts. For other nematode species, "race" is defined by host ranges involving different plant species, whereas the H. glycines race test involves a set of lines of the same plant species. Nonetheless, because H. glycines populations vary in genetic diversity, and this variation has implications for management strategies, a mechanism is needed for documenting and discussing population differences. The HG Type scheme described herein avoids the implication of genetic uniformity or predictability in contrast to the way the race scheme has been used.  相似文献   

12.
13.
Use of resistant cultivars is one of the major tactics for combating soybean cyst nematode, Heterodera glycines Ichinohe, which is the most destructive pathogen affecting soybean seed production. However, developing new H. glycines-resistant soybean cultivars is a very labor-intensive process, partially due to the lack of a quick method for counting the H. glycines females that develop on soybean roots. We have developed a fluorescence image-based system for counting females on excised seedling roots cultured on nutrient media in petri dishes. In this system, the females fluoresced when exposed to a wavelength of 570 nm. The fluorescent images were captured with a digital camera, transferred to a computer, and displayed on a monitor. The image of an entire sample was viewed at once, and the fluorescing females were counted manually. This system significantly improved the efficiency and accuracy of counting females developed on cultured seedling roots compared to a microscope counting method. The potential for applications in the screening of nematode-resistant crops is discussed.  相似文献   

14.
An 11-year field study was initiated in 1979 to monitor population development of Heterodera glycines. Fifty cysts of a race 5 population were introduced into plots in a field with no history of soybean production and that had been in sod for 20 years. Soybean cultivars either susceptible or resistant to H. glycines were grown either in monoculture or rotated with maize in a 2-year rotation. During the first 5 years, resistant cultivars with the Peking source of resistance were planted. After year 5, monocuhure of Peking resistance resulted in 18 cysts/250 cm³ of soil, whereas populations resulting from the continuous cropping of susceptible soybean resulted in 45 cysts/250 cm³. Some plots in all treatments, including control plots, were contaminated at the end of year 5. Crop rotation delayed population development of H. glycines. During years 6 through 11 cv. Fayette (PI88.788 source of resistance) was planted. In year 6 numbers of cysts declined to 1/250 cm³ of soil in the treatment consisting of monocultured Fayette. At the end of year 10, cysts were below the detection level in all treatments in which Fayette was planted. Yield of susceptible soybean in monoculture with or without H. glycines infestation was lower beginning in year 6 when compared to yield of soybean grown in rotation and remained lower throughout the duration of the experiment except for 1987 (year 9). Yields of susceptible and resistant soybean were different each year except for drought years in 1980 and 1988. From 1979 to 1982 differences in yield were due to lower yield potential of resistant cultivars. Except for the drought year, yield of cv. Fayette was greater than susceptible Williams 82 during years 6 through 11.  相似文献   

15.
Competition on soybean between Heterodera glycines (race 3) and Meloidogyne incognita or H. glycines and Pratylenchus penetrans were investigated in greenhouse experiments. Each pair of nematode species was mixed in 3-ml suspensions at ratios of 1,000:0, 750:250, 500:500, 250:750, and 0:1,000 second-stage juveniles or mixed stages for P. penetrans. Nematodes from a whole root system were counted and infection rates standardized per 1,000 nematodes (per replication) prior to testing the null hypothesis through a lack-of-fit F-test. Although the effect of increasing H. glycines proportions on the infection rate of M. incognita was generally adverse, the rate deviated significantly from a trend of linear decline at the 75% H. glycines level in one of two experiments. All lack-of-fit F-tests for the H. glycines and P. penetrans mix were significant, indicating that infection rates for both nematodes varied considerably across inocula. The infection rate of H. glycines decreased with increasing P. penetrans proportions. The rate of P. penetrans infection increased with increasing H. glycines proportions up to the 50% level, but declined at the 75% level. Competition had no effect on nematode development. The general adverse relationships between M. incognita and H. glycines and those between P. penetrans and H. glycines showed a linear trend. The relationship between H. glycines and P. penetrans indicates that the former may be competitive when present at higher proportions than the latter. In this study we have evaluated nematode competition under controlled conditions and provide results that can form a basis for understanding the physical and physiological trends of multiple nematode interactions. Methods critical to data analyses also are outlined.  相似文献   

16.
Population dynamics of Heterodera glycines (SCN) were influenced by initial nematode population density in soil, soybean root growth pattern, soil type, and environmental conditions in two field experiments. Low initial populations (Pi) of SCN increased more rapidly during the growing season than high Pi and resulted in greater numbers of nematodes at harvest. Egg and juvenile (J2) populations increased within 2-6 weeks after planting when early-season soil temperatures were 20 C and above and were delayed by soil temperatures of 17 C or below in May and early June. Frequencies of occurrence and number of nematodes decreased with increasing depth and distance from center of the soybean row. Spatial pattern of SCN paralleled that of soybean roots. Higher clay content in the subsoil 30-45 cm deep in one field restricted soil penetration by roots, indirectly influencing vertical distribution of SCN. Shoot dry weight was a good indicator of the effect of SCN on seed yield. Root dry weight was poorly correlated with soybean growth and yield. The relationship of yield (seed weight) to Pi was best described by a quadratic equation at one site, but did not fit any regression model tested at the second site.  相似文献   

17.
Experiments were conducted for 3 years at four locations and 1 year with six soil types at a common location in North Carolina to determine damage and control-cost functions for Heterodera glycines races 1 and 2 on soybean. In the experiments on native loamy sand and sandy soils, tolerance limits for initial population densities were 0 or very low, whereas in a muck, the tolerance limit was 315 eggs/500 cm³ soil. The aggressive race 2 was more damaging than race 1 in Lakeland sand and Norfolk loamy sand. The crop response was not different between races in the Appling sandy clay loam and Belhaven muck. Soybean yield responses to H. glycines were linear in six soil types in microplots at a common site. The amount of damage varied among these soil types, with lowest yields in the muck because of severe drought stress in this soil. An exponential function adequately described soybean yield response relative to nematode control with increasing rates of aldicarb in Norfolk loamy sand. Treatment with aldicarb in the Lakeland sand decreased the effective egg population of H. glycines but had only a minor effect in the muck.  相似文献   

18.
The effect of crop sequence on parasitism of second-stage juveniles (J2) of Heterodera glycines by Hirsutella rhossiliensis was investigated. Data were collected from plots of a long-term crop rotation experiment established in 1982. Crop sequences included (i) continuous monoculture of corn and soybean; (ii) annual rotation of the two crops; and (iii) 1, 2, 3, 4, or 5 years of each crop following 5 years of the other crop. The nematode J2 density and percentage of J2 parasitized by the fungus were determined at planting, midseason, and end of season in 1997 and 1998. A significant effect of the crop sequence on parasitism of J2 was observed at midseason in both years and at end of season in 1998. In plots of first-year soybean following 5 years of corn, fungal parasitism increased from an undetectable level at planting to 2% and 4% of J2 parasitized by ends of season in 1997 and 1998, respectively. Fungal parasitism was similar in plots of second-through-fifth-year soybean after 5 years of corn and in plots of soybean monoculture. Parasitism of J2 in the soybean plots in annual rotation with corn increased from undetectable and 2% at planting to 6% and 23% at midseason in 1997 and 1998, respectively. The effect of crop sequence on the fungal parasitism of J2 may be attributed to a density-dependent relationship between the parasite and its host. Season also affected the fungal parasitism; percentage of J2 parasitized by the fungus was the highest at midseason and the lowest at planting.  相似文献   

19.
Short-term greenhouse studies with soybean (Glycine max cv. Bragg) were used to examine interactions between the soybean cyst nematode (Heterodera glycines) and two other common pests of soybean, the stem canker fungus (Diaporthe phaseolorum var. caulivora) and the soybean looper (Pseudoplusia includens), a lepidopterous defoliator. Numbers of cyst nematode juveniles in roots and numbers of cysts in soil and roots were reduced on plants with stem cankers. Defoliation by soybean looper larvae had the opposite effect; defoliation levels of 22 and 64% caused stepwise increases in numbers of juveniles and cysts in both roots and soil, whereas numbers of females in roots decreased. In two experiments, stem canker length was reduced 40 and 45% when root systems were colonized by the soybean cyst nematode. The absence of significant interactions among these pests indicates that the effects of soybean cyst nematode, stem canker, and soybean looper on plant growth and each other primarily were additive.  相似文献   

20.
Previous laboratory research demonstrated that N-Viro Soil (NVS), an alkaline-stabilized municipal biosolid, suppressed plant-parasitic nematodes. This study continued to explore the use of NVS as a nematode management tool specifically addressing factors that could influence its use. N-Viro Soil from different locations, the components of NVS (de-watered biosolids and fly ash admixtures), and sterilized NVS were applied to sand microcosms to determine effects on nematode survival sand solution pH and ammonia concentrations. This study confirmed the previous finding that an important mechanism of Heterodera glycines suppression by NVS was the generation of alkaline soil conditions. Only the fly ash admixture that resulted in an increase in pH to 10.0 suppressed H. glycines to the same level as NVS. Alkaline-stabilization of biosolids was necessary to achieve nematode suppression. Biosolids applied at rates <3% dry w/w did not suppress H. glycines to the same level as equivalent amounts of NVS. Sand solution pH levels after biosolid application, regardless of rate, were approximately 8.5 whereas 1% and 4% w/w NVS amendment resulted in pH levels of 10.3 and 11.6, respectively. NVS from different processing facilities were all effective in suppressing H. glycines. The NVS source that produced the highest concentration of ammonia did not reduce H. glycines survival to the same level as those sources generating pH levels above 10.1. Microbes associated with NVS appeared not to be responsible for the nematode suppressiveness of the amendment; there was no difference in nematode suppression between autoclaved and nonautoclaved NVS. The role that ammonia plays in the suppression of H. glycines by NVS is still unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号