首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple and reliable method for synthesizing four isomers of parinaric acid from alpha-linolenic acid (ALA) in high yields is described. The methylene-interrupted, cis triene system (1,4,7-octatriene) of ALA and common to other naturally occurring polyunsaturated fatty acids was transformed to a conjugated tetraene system (1,3,5,7-octatetraene). The synthesis involves bromination of ALA using 0.l M Br(2) in a saturated solution of NaBr in methanol, esterification of the fatty acid dibromides, double dehydrobromination by 1,8-diazabicyclo[5.4.0]undec-7-ene and saponification of the conjugated esters to a mixture of free conjugated acids. Addition of one molecule of bromine to the 12,13-double bond of ALA and subsequent dehydrobromination produces alpha-parinaric acid (9Z,11E,13E,15Z-octadecatetraenoic acid); addition of Br(2) to the 9,10-double bond or 15,16-double bond and then dehydrobromination and rearrangement yields 9E,11E,13E,15Z-octadecatetraenoic or 9E,11E,13E,15Z-octadecatetraenoic acids, respectively. The mixture of parinaric acid isomers is obtained in 65% yield, and the isomers can be purified by preparative HPLC; alternatively, the isomers can be converted by base catalyzed cis-trans isomerization (or by treatment with I(2)) to exclusively beta-parinaric acid (9E,11E,13E,15E-octadecatetraenoic acid). The various parinaric acid isomers were characterized by (1)H NMR, (13)C NMR, UV, GLC, HPLC and mass spectrometry.  相似文献   

2.
The delta 5,9 fatty acids (5Z,9Z)-5,9-hexadecadienoic acid, (5Z,9Z)-5,9-nonadecadienoic acid, and (5Z,9Z)-5,9-eicosadienoic acid were synthesized for the first time in four steps (9-12% overall yield) starting from commercially available 2-(2-bromoethyl)-1,3-dioxolane. The synthetic approach provided enough material to corroborate the structure and stereochemistry of (5Z,9Z)-5,9-nonadecadienoic acid which was recently identified in the flowers of Malvaviscus arboreus (Malvaceae). The novel phospholipids 1-hexadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn-glycer o-3-phosphocholine and 1-octadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn- glycero-3-phosphocholine were also synthesized from commercially available L-alpha-phosphatidylcholine (egg yolk) and characterized by positive ion electrospray mass spectrometry. These are the first examples of unsymmetrical phospholipids with saturated fatty acids at the sn-1 position and delta 5,9 fatty acids at the sn-2 position.  相似文献   

3.
Abstract The bacterial fatty acids of three strains of Desulfobulbus grown on propionate were analysed. The fatty acid profiles of all three strains were very similar, being dominated by C17: 1Δ11, which represented approx. 50% of the total fatty acids, and with major contributions from C15:0, C16:0, C15:1, C18:1Δ11 and C14:0. This data indicates that all three strains are closely related despite their different habitats (1 marine and 2 freshwater) and that C17:1Δ11 is a biomarker for Desulfobulbus .  相似文献   

4.
We hypothesized that the polyunsaturated fatty acids of the butterfly were probably derived from the diet and that there might be a great loss of body fat during metamorphosis. To substantiate these hypotheses, we analyzed the fatty acid composition and content of the diet, the larva, and the butterfly Morpho peleides. Both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. In the diet, linolenic acid accounted for 19% and linoleic acid for 8% of total fatty acids. In the larva, almost 60% of the total fatty acids were polyunsaturated: linolenic acid predominated at 42% of total fatty acids, and linoleic acid was at 17%. In the butterfly, linolenic acid represented 36% and linoleic acid represented 11% of total fatty acids. The larva had a much higher total fatty acid content than the butterfly (20.2 vs. 6.9 mg). Our data indicate that the transformation from larva to butterfly during metamorphosis drastically decreased the total fatty acid content. There was bioenhancement of polyunsaturated fatty acids from the diet to the larva and butterfly. This polyunsaturation of membranes may have functional importance in providing membrane fluidity useful in flight.  相似文献   

5.
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.  相似文献   

6.
Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.  相似文献   

7.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

8.
Abstract manganese lipoxygenase (Mn-LO) oxygenates 18:3n-3 and 18:2n-6 to bis-allylic 11S-hydroperoxy fatty acids, which are converted to 13R-hydroperoxy fatty acids. Other unsaturated C(16)-C(22) fatty acids, except 17:3n-3, are poor substrates, possibly because of ineffective enzyme activation (Mn(II)-->Mn(III)) by the produced hydroperoxides. Our aim was to determine whether unsaturated C(16)-C(22) fatty acids were oxidized by Mn(III)-LO. Mn(III)-LO oxidized C(16), C(19), C(20), and C(22) n-3 and n-6 fatty acids. The carbon chain length influenced the position of hydrogen abstraction (n-8, n-5) and oxygen insertion at the terminal or the penultimate 1Z,4Z-pentadienes. Dilinoleoyl-glycerophosphatidylcholine was oxidized by Mn-LO, in agreement with a "tail-first" model. 16:3n-3 was oxidized at the bis-allylic n-5 carbon and at positions n-3, n-7, and n-6. Long fatty acids, 19:3n-3, 20:3n-3, 20:4n-6, 22:5n-3, and 22:5n-6, were oxidized mainly at the n-6 and the bis-allylic n-8 positions (in ratios of approximately 3:2). The bis-allylic hydroperoxides accumulated with one exception, 13-hydroperoxyeicosatetraenoic acid (13-HPETE). Mn(III)-LO oxidized 20:4n-6 to 15R-HPETE ( approximately 60%) and 13-HPETE ( approximately 37%) and converted 13-HPETE to 15R-HPETE. Mn(III)-LO G316A oxygenated mainly 16:3n-3 at positions n-7 and n-6, 19:3n-3 at n-10, n-8, and n-6, and 20:3n-3 at n-10 and n-8. We conclude that Mn-LO likely binds fatty acids tail-first and oxygenates many C(16), C(18), C(20), and C(22) fatty acids to significant amounts of bis-allylic hydroperoxides.  相似文献   

9.
The control of pheromone biosynthesis by the neuropeptide PBAN was investigated in the moth Heliothis virescens. When decapitated females were injected with [2-(14)C] acetate, females co-injected with PBAN produced significantly greater quantities of radiolabeled fatty acids in their pheromone gland than females co-injected with saline. This indicates that PBAN controls an enzyme involved in the synthesis of fatty acids, probably acetyl CoA carboxylase. Decapitated females injected with PBAN showed a rapid increase in native pheromone, and a slower increase in the pheromone precursor, (Z)-11-hexadecenoate. Total native palmitate and stearate (both pheromone intermediates) showed a significant decrease after PBAN injection, before their titers were later restored to initial levels. In contrast, the acyl-CoA thioesters of these two saturated fatty acids increased during the period when their total titers decreased. When a mixture of labeled palmitic and heptadecanoic (an acid that cannot be converted to pheromone) acids was applied to the gland, PBAN-injected females produced greater quantities of labeled pheromone and precursor than did saline-injected ones. The two acids showed similar time-course patterns, with no difference in total titers of each of the respective acids between saline- and PBAN-injected females. When labeled heptadecanoic acid was applied to the gland alone, there was no difference in titers of either total heptadecanoate or of heptadecanoyl-CoA between PBAN- and saline-injected females, suggesting that PBAN does not directly control the storage or liberation of fatty acids in the gland, at least for this fatty acid. Overall, these data indicate that PBAN also controls a later step involved in pheromone biosynthesis, perhaps the reduction of acyl-CoA moieties. The control by PBAN of two enzymes, near the beginning and end of the pheromone biosynthetic process, would seem to allow for more efficient utilization of fatty acids and pheromone than control of only one enzyme.  相似文献   

10.
The moss Physcomitrella patens contains high proportions of polyunsaturated very-long-chain fatty acids with up to 20 carbon atoms. Starting from preformed C18 polyunsaturated fatty acids, their biosynthesis involves a sequence of Delta6-desaturation, Delta6-elongation and Delta5-desaturation. In this report we describe for the first time the characterisation of a cDNA (PSE1) of plant origin with homology to the ELO-genes from Saccharomyces cerevisiae, encoding a component of the Delta6-elongase. Functional expression of PSE1 in S. cerevisiae led to the elongation of exogenously supplied Delta6-polyunsaturated fatty acids. By feeding experiments with different trienoic fatty acids of natural and synthetic origin, both substrate specificity and substrate selectivity of the enzyme were investigated. The activity of Pse1, when expressed in yeast, was not sensitive to the antibiotic cerulenin, which is an effective inhibitor of fatty acid synthesis and elongation. Furthermore, the PSE1 gene was disrupted in the moss by homologous recombination. This led to a complete loss of all C20 polyunsaturated fatty acids providing additional evidence for the function of the cDNA as coding for a component of the Delta6-elongase. The elimination of the elongase was not accompanied by a visible alteration in the phenotype, indicating that C20-PUFAs are not essential for viability of the moss under phytotron conditions.  相似文献   

11.
【目的】系统鉴定哈氏弧菌脂酰-ACP合成酶(Acyl-ACP synthetase,Aas S)以不同链长游离脂肪酸和非脂肪链羧酸作为底物的体外催化反应。【方法】利用非变性蛋白质凝胶电泳和紫外分光光度计法从定性和定量两个方面分析了Aas S的体外催化功能与活性。【结果】Aas S能够催化不同链长直链的自由脂肪酸合成脂酰-ACP,其中以C6–C12作为底物时活性最高;以羟基脂肪酸作为底物的情况下,Aas S催化C8–C14的羟基脂肪酸有较高的活性。非脂肪链羧酸类作为底物的反应中,20种蛋白质氨基酸、苯甲酸和水杨酸均可以作为Aas S的底物,合成相应的脂酰-ACP。【结论】本研究系统地证明了哈氏弧菌脂酰-ACP合成酶(Aas S)对不同底物的不同催化活性,为生物体内氨基酸代谢和菌黄素合成代谢的研究提供了可行性的分析依据。  相似文献   

12.
Omega-3 fatty acids have been implicated in cancer prevention and treatment. Conventional chemotherapeutics are considered “double-edged swords”, as they kill the cancer cells but also strike the healthy cells causing severe morbidity and sometimes also mortality. Could omega-3 fatty acids in this setting work as a “sword and shield” instead, by being cytotoxic to cancer cells, but at the same time protect healthy cells from these deleterious effects? In addition, may our current diet with decreased omega-3/omega-6 ratio contribute to the increased cancer incidence, and could an omega-3 enriched diet be used as a preventive measure against cancer?Here, we seek answers to these questions by reviewing the effects of omega-3 fatty acids, particularly DHA, on various cancers with emphasis on a cancer of neural origin, neuroblastoma. Results from preventive and therapeutic animal as well as human studies together with mechanisms behind the observed toxicity are summarized.  相似文献   

13.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

14.
Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet.  相似文献   

15.
Reduced omega-3 and omega-6 fatty acids in red blood cell (RBC) membranes are often found in patients with schizophrenia. Here we investigated whether membrane concentrations of these fatty acids might vary as a function of schizotypal traits in non-psychotic individuals. Twenty-five healthy adults completed the O-LIFE schizotypal trait inventory and fatty acid composition of their venous blood samples was analysed via gas-liquid chromatography. Correlations between schizotypy measures and RBC fatty acids were examined and comparisons made between groups high and low on fatty acid measures and schizotypy scores. The omega-6 fatty acids arachidonic, adrenic and docosapentaenoic acid were directly related to positive schizotypal trait measures, as were most omega-3 fatty acids, but none were related to a negative, withdrawn form of schizotypy. Our findings of high RBC concentrations of omega-3 and omega-6 fatty acids in healthy adults with positive schizotypal traits clearly contrast with the low levels often found in schizophrenia, but are quite consistent with evidence that omega-3 fatty acids (notably EPA) can be useful in the treatment of schizophrenic illness.  相似文献   

16.
Seven Z-octadecenoic acids having the double bond located in positions 6Z to 13Z were photooxidized. The resulting hydroperoxy-E-octadecenoic acids [HpOME(E)] were resolved by chiral phase-HPLC-MS, and the absolute configurations of the enantiomers were determined by gas chromatographic analysis of diastereoisomeric derivatives. The MS/MS/MS spectra showed characteristic fragments, which were influenced by the distance between the hydroperoxide and carboxyl groups. These fatty acids were then investigated as substrates of cyclooxygenase-1 (COX-1), manganese lipoxygenase (MnLOX), and the (8R)-dioxygenase (8R-DOX) activities of two linoleate diol synthases (LDS) and 10R-DOX. COX-1 and MnLOX abstracted hydrogen at C-11 of (12Z)-18:1 and C-12 of (13Z)-18:1. (11Z)-18:1 was subject to hydrogen abstraction at C-10 by MnLOX and at both allylic positions by COX-1. Both allylic hydrogens of (8Z)-18:1 were also abstracted by 8R-DOX activities of LDS and 10R-DOX, but only the allylic hydrogens close to the carboxyl groups of (11Z)-18:1 and (12Z)-18:1. 8R-DOX also oxidized monoenoic C(14)-C(20) fatty acids with double bonds at the (9Z) position, suggesting that the length of the omega end has little influence on positioning for oxygenation. We conclude that COX-1 and MnLOX can readily abstract allylic hydrogens of octadecenoic fatty acids from C-10 to C-12 and 8R-DOX from C-7 and C-12.  相似文献   

17.
A marine yellowish picoplankton, strain PP301, which was newly isolated from the surface seawater of the western Pacific Ocean was an eminent producer of polyunsaturated fatty acids. Its fatty acids were mostly shared by the shortest saturated form (14:0, 20–30%) and polyunsaturated forms (20:4, EPA and DHA) which accounted for about 50% of the total fatty acids. The amount of intermediate forms in 16 and 18 carbon chains were very little. This composition was consistently observed irrespective of the growth temperatures (15–35 °C).  相似文献   

18.
Alfalfa leafcutting bees, Megachile rotundata (F.), overwinter as prepupae. The internal lipids were extracted from prepupae that had been wintered at 4 degrees C for 7 months. Megachile rotundata prepupae possessed copious quantities of internal lipids (20% of the fresh weight) that were extracted with CHCl3/methanol (2:1). Transmission electron microscopy revealed that lipids were stored within very large intracellular vacuoles. Separation by silica chromatography revealed that 88% of the internal lipids were triacylglycerols. Ester derivatives of fatty acids from triacylglycerol components were analyzed by gas chromatography-mass spectrometry and 15 fatty acid constituents were identified. The majority (76%) of the triacylglycerol fatty acids were unsaturated fatty acids. The major triacylglycerol fatty acid constituent (30%) was the C16 monounsaturated fatty acid, palmitoleic acid (16:1, hexadec-9-enoic acid), with substantial amounts of linolenic acid (18:3, octadec-9,12,15-trienoic acid, 15%), palmitic acid (16:0, hexadecanoic acid, 14%) and oleic acid (18:1, octadec-9-enoic acid, 13%). Palmitoleic acid as the major fatty acid of an insect is an unusual occurrence as well as the presence of the 16-carbon polyunsaturated fatty acids, 16:2 and 16:3. The major intact triacylglycerol components were separated and identified by high performance liquid chromatography-mass spectrometry. A complex mixture of approximately 40 triacylglycerol components were identified and major components included palmitoyl palmitoleoyl oleoyl glycerol, palmitoyl palmitoleoyl palmitoleoyl glycerol, myristoyl palmitoleoyl palmitoleoyl glycerol, myristoleoyl palmitoyl palmitoleoyl glycerol, and palmitoyl palmitoleoyl linolenoyl glycerol. The function of these internal lipids and their relevance to winter survival and post-wintering development of M. rotundata is discussed.  相似文献   

19.
Metabolic Turnover of Fatty Acids and Acylglycerols in Rat Sciatic Nerve   总被引:3,自引:3,他引:0  
To explain the discrepancy between the low level and high metabolic activity of endoneurial free fatty acids (FFAs) and triacylglycerol (TG), levels of de novo synthesized FFA and acylglycerols were measured in rat sciatic endoneurium at various intervals after endoneurial microinjection of [14C]acetate. Soon after injection (less than 10 min), the [14C]acetate was metabolized to FFA and incorporated into diacylglycerol (DG), TG, sterols, ceramides, and various phospholipids. The proportions of 14C-labeled FFA, DG, TG, and ceramides to total 14C-labeled lipids decreased, whereas those of phospholipids and cerebrosides increased with time after injection. These findings suggest that rapid turnover of FFA and TG may contribute to their low level in sciatic endoneurium. The de novo synthesized fatty acids were largely incorporated into phosphatidylcholine (approximately 50% of total 14C-labeled phospholipids), probably via the cytidine nucleotide pathway using 1,2-DG as a metabolic intermediate. Hydrolysis of [14C]phosphatidylcholine revealed that fatty acids were labeled at both the C-1 (approximately 43%) and C-2 (approximately 57%) positions. On the other hand, a temporal association between decreased amounts of 14C-label in ceramides and increased amounts of 14C-label in sphingomyelin and galactocerebrosides supports the hypothesis that peripheral nerve galactocerebroside is derived, in vivo, from ceramide via acylation of sphingosine. This exclusive labeling of endoneurial lipids by endoneurial microinjection of labeled precursor provides a unique model for studying synthesis and metabolic turnover of membrane lipids in experimental neuropathies.  相似文献   

20.
Quantitative cytological and fatty acid composition was determined for the diatom Cyclotella meneghiniana Kütz, Data from four separate experiments were examined to elucidate changes that may occur with respect to daily photoperiod. Overall, fatty acid composition is similar to that reported for other diatoms with the exception that the C16 fatty acids constitute approximately 70% of all fatty acids. The major fatty acids are C14:0, 16:1, 16:0, 18:0, and 20:5. Fatty acids that are present in minor amounts are iso-14:0, iso-15:0, 15:0, 17:0, 18:4, 18:2, 18:1, 19:0, 20:0, 22:0, and 23:0. Cytological composition is similar to that previously reported with the chloroplast and vacuole being the largest compartments within the cell. Changes in both cytological and fatty acid composition were studied with respect to the light / dark cycle. Chloroplast and lipid relative volume are greatest during the early part of the dark period. Nuclear relative volume is lowest in the dark and increases throughout the light period. Total unsaturated fatty acids, including the C20:5 fatty acid, are lowest in the early part of the light period and highest in the dark. The sum of the C16 fatty acids remains constant at 70% of total fatty acids in the cells throughout the light/dark cycle, although percent composition of these two fatty acids shifts. The data suggest that cyclical changes occur in both quantitative morphology and fatty acids composition with respect to daily photoperiod. The cells, although not rigidly synchronized, most likely divide in the latter part of the dark period or in the first hours of the light period. Lipids increase dramatically in the dark. The ecological implications of lipid storage are discussed in relation to lipophilic toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号