首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In studies on the mechanism of the inhibitory effect of 2, 3-diphosphoglycerate on glycolysis in human erythrocytes, the following results were obtained: 1) Glucose consumption and lactate production are reduced by 70 and 40 per cent relative to normal erythrocytes in red blood cells containing five times the normal amount of 2, 3, -P2-glycerate ("high-diphosphoglycerate" cells) at an extracellular pH of 7.4. The marked dependency of glycolysis on the extracellular pH observed in normal erythrocytes is almost completely lost in the "high-diphosphoglycerate" cells. 2) About 50 per cent of the inhibition of glycolysis in "high-diphosphoglycerate" cells can be accounted for by the 2, 3-P2-glycerate-induced decrease of the red-cell pH. This fall of the red-cell pH which occurs as a conswquence of the Donnan effect of the non-pentrating 2, 3-P2-glycerate anion leads to a reduction of the glycolytic rate due to the properties of the enzyme phosphofructokinase. 3) The remaining part of the inhibitory effect must be attributed to an inhibition by 2, 3-P2-glycerate of glycolytic enzymes. From measurements of glycolytic rates and of the concentrations of glycolytic intermediates in the absence and presence of methylene blue it is concluded that the hexokinase reaction is inhibited by an elevation of 2, 3-P2-glycerate concentration in "high-diphosphoglycerate" cells suggests that also the enzyme pyruvate kinase is inhibited by 2, 3-P2-glycerate. 4) The dependencies of net-change of 2, 3-P2-glycerate concentration on the red-cell pH are identical in normal and "high-diphosphoglycerate" cells indicating that the balance between formation and decomposition of 2, 3-P2-glycerate is the same in erythrocytes with normal and very high compositions of 2, 3-P2-glycerate.  相似文献   

2.
1. Evidence is presented that silicon uptake in the diatom Navicula pelliculosa is linked with aerobic respiration. 2. Cyanide, fluoride, iodoacetate, arsenite, azide, and fluoroacetate, at concentrations inhibitory to respiration, were also inhibitory to silicon uptake. 3. 2,4-Dinitrophenol (1 to 2 x 10(-5)M) stimulated respiration by 100 per cent, but almost completely inhibited silicon uptake. 4. The respiratory quotient of non-Si-deficient cells decreased from 0.93 to 0.75 after 4 days of starvation in darkness. Glucose (1 per cent) raised the respiratory quotient of such starved cells to 1.05. 5. Silicate (20 mg. Si/liter) stimulated respiration of unstarved Si-deficient cells by about 40 per cent. The effect of silicate on the respiration of Si-deficient cells which had been starved in darkness for 4 days was less marked. 6. The respiratory quotient of Si-deficient cells decreased from 0.8-0.9 to 0.3 after 4 days of starvation in darkness. The addition of silicate to starved cells raised the quotient to 0.5. This represented a 25 per cent stimulation of oxygen uptake concomitant with a 90 per cent stimulation of carbon dioxide evolution. 7. Glucose (1 per cent) caused an increase of respiratory quotient in starved cells from 0.3 to 0.7-0.8. The addition of silicate had no effect on the R.Q. during the oxidation of exogenous glucose. 8. Substrates (glucose, fructose, galactose, lactate, succinate, citrate, glycerol), which caused a stimulation of respiration in starved cells, also stimulated silicon uptake by those cells. However, the stimulation of silicon uptake (50 to 100 per cent) was not proportional to the respiratory stimulation by these substrates (30 to 300 per cent).  相似文献   

3.
IL-3 regulates the glycolytic pathway. In Baf-3 cells IL-3 starvation leads to a decrease in glucose uptake and in lactate production. To determine if there is a link between the decreased metabolism induced by growth factor-starvation and the induction of cell death, we have compared the cell death characteristics and the metabolic modifications induced by IL-3-deprivation or glucose-deprivation in Baf-3 cells. We show that in both conditions cells die by an apoptotic process which involves the activation of similar Caspases. Different metabolic parameters (i.e. intracellular ATP levels and lactate accumulation in the culture medium) were measured. We show that IL-3 deprivation leads to a partial decrease in lactate production in contrast to glucose deprivation that completely inhibits lactate production. Similarly following IL-3-starvation a significant drop in the intracellular ATP levels in live cells is observed only after 16 h when a large fraction, more than 50 per cent of cells, is already apoptotic. On the contrary, glucose deprivation is followed by an abrupt decrease in ATP levels in the first 2 h of treatment. However, in the presence of IL-3, cells are able to survive for an extended time in these conditions since 70% of cells survived with low ATP levels for up to 16 h. This was not due to partial inhibition of the apoptotic process by the low level of ATP as glucose-deprivation in the absence of IL-3 led to faster death kinetics of Baf-3 cells compared with IL-3 starvation only. These results indicate that the drop in ATP levels and the triggering of apoptosis can be dissociated in time and that when the glycolytic pathway is strongly inhibited, cells are able to survive with relatively low ATP levels if IL-3 is present. Finally we show that induction of bcl-x by IL-3 protects cells from glucose-deprivation induced cell death.  相似文献   

4.
The heat production of human erythrocytes was measured on a flow microcalorimeter with simultaneous analyses of lactate and other metabolites. The heat production connected with the lactate formation was about 17 kcal (71 kJ) per mol lactate formed which corresponded to the sum of heat production due to the formation of lactate from glucose and the heat production due to neutralization. The heat production rate increased as the pH of the suspension increased, corresponding to the increase in lactate formation. Glycolytic inhibitors such as fluoride and monoiodoacetate caused a decrease in the rate of heat production, whereas arsenate induced a large transient increase in heat production associated with a transient increase in lactate formation. Decrease in pyruvate concentration was usually associated with increase in heat production, although the decreased pyruvate concentration was coupled with formation of 2,3-bisphosphoglycerate. When inosine, dihydroxyacetone or D-glyceraldehyde was used as a substrate, an increase in the heat production rate was observed. Addition of methylene blue caused an oxygen uptake which was accompanied by a remarkable increase in heat production rate corresponding to about 160 kcal (670 kJ) per mol oxygen consumed. The value for heat production in red cells in the above-mentioned metabolic conditions was considered in relation to earlier known data on free energy and enthalpy changes of the different metabolic steps in the glycolytic pathway.  相似文献   

5.
Literature values for ‘resting’ glycolytic and respiratory rates of guinea pig exudate polymorphonuclear leucocytes as reported by various authors were calculated to the same unit basis to determine what differences might exist. Comparison experiments investigated preparative techniques to determine the significance with respect to the variations discovered. Procedures using 12 or 0.1% casein in saline as peritoneal irritant, 0 or 37 °C collection temperatures, siliconed or non-siliconed glassware, and hemolysis treatment to remove red blood cells, did not affect glycolytic rate in leucocytes. Three different anticoagulants used, heparin, citrate, and ethylenediamine tetracetic acid (EDTA) did account for the variability in the reported glycolytic rates by increasing the lactate production as compared with cells not exposed to anticoagulant. Citrate and EDTA increased the lactate production approx. 65%, heparin 22%, with the increase apparently related to the calcium chelating ability. Calcium ions were found to depress the glycolytic lactate production proportionately as the concentration increased up to 0.0026 M in the incubation medium. The removal or absence of calcium ions from the medium increased the lactate formation.  相似文献   

6.
The effects of methotrexate (MTX) on oxygen uptake by permeabilized HeLa cells were evaluated. MTX did not inhibit state III respiration when the oxidizable substrate was succinate, but when the substrates were 2-oxoglutarate or isocitrate the respiration decreased about 50 per cent at 1·0 mM concentration of the drug. This effect was explained by inhibition of 2-oxoglutarate and isocitrate dehydrogenases by MTX. No effect was observed on succinate dehydrogenase. An evaluation of the effects of MTX on malic enzyme activity as measured by pyruvate plus lactate production in intact cells supplied with malate showed a decrease of about 40 per cent in metabolite production using 0·4 mM MTX. HeLa cell malic enzyme, as observed for other tumour cells, is compartmentalized in mitochondria and cytosol, and is another example of a dehydrogenase inhibited by MTX. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
Synthesis of adenosine triphosphate by myelin of spinal nerves of rabbit   总被引:1,自引:0,他引:1  
Abstract—
  • 1 The myelin fraction isolated by isopycnic gradient centrifugation from rabbit nerve is able to synthesize ATP at substrate level through the Embden-Meyerhof pathway. Suitable conditions are described to preserve the association of glycolytic enzymes with isolated myelin.
  • 2 Except for phosphofructokinase and ketose-1-phosphate aldolase, all the remaining glycolytic enzymes are present in the myelin. A wide divergence was found in the firmness of the association of individual glycolytic enzymes with myelin under the condition of isolation; some, like glucosephosphate isomerase and glyceraldehydephosphate dehydrogenase were retained in high percentage (about 60 per cent of the activity of the homogenate is myelin-bound); others were weakly bound (no more than 7–6 percent of the lactate dehydrogenase activity of the homogenate is myelin-bound).
  • 3 By using glyceraldehyde-3-phosphate as substrate for glycolysis, about 25 per cent of the total glycolytic activity of rabbit-nerve homogenate is associated with the myelin.
  • 4 Glucosephosphate isomerase and lactate dehydrogenase may be extracted from and readily recombined with the myelin.
  相似文献   

8.
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

9.
J C Marchand  A Lavoinne  M Giroz  F Matray 《Biochimie》1979,61(11-12):1273-1282
The effect of adenosine was tested on the energetic metabolism of fed rat liver cells after isolation. The cells were incubated in a buffered saline medium with glucose (5 mM) and adenosine (1 mM) for 30 minutes at 37 degrees C. This increased the concentration of the adenylic nucleotides ATP (+57 per cent, ADP (+39 per cent). Cyclic AMP was increased (+50 per cent) and the intracellular inorganic phosphate decreased (-22 per cent). These changes were accompaned by a decrease of glycogenolysis, glucose consumption and lactate production. Measurement of glycolytic intermediates showed decreased concentrations of fructose 1,6-bis-phosphate and 3-phosphoglycerate proportional to the increase in ATP concentration. The near-equilibrium of the glyceraldehyde 3-phosphate dehydrogenase-phosphoglycerate kinase system was not modified by adenosine. The decrease of the NAD+/NADH ratio along with the increase of the ATP/ADP X PO4 ratio explains the decrease of 3-phosphoglycerate. The decrease in glucose consumption can be explained by the cross over at the phosphofructokinase stage with the decrease of fructose 1,6-bisphosphate. The major part of adenosine was deaminated as indicated by an increase in the production of ammonia and urea. The effects of inosine, or adenosine along with an inhibitor of adenosine deaminase (pentostatin) suggest that adenosine acts on the glucose consumption through adenylic nucleotides. However the increase of the adenylic nucleotide level cannot totally explain the other metabolic changes: decrease of the NAD+/NADH cytoplasmic ratio, constancy of this ratio in mitochondria, decrease of gluconeogenesis from lactate. A direct action of adenosine can therefore be expected.  相似文献   

10.
An in vitro glycolysis system has been developed to study the regulation of glycolysis on kinetic structure basis, in order to determine the extent of regulatory effects on the whole system of individual enzymes according to their kinetic data, in rat liver and muscle. Hexokinase or glucose-6-phosphate addition to the system with glucose as substrate increases lactate production rate by 2.5 in liver and by 10 in muscle, which suggest glucose phosphorylation step is a limiting step in this system. Fructose 2,6-bisphosphate addition to the system increases lactate production rate in liver only when glucose is the substrate, but not with glucose-6-phosphate as substrate. There is a linear relationship between glycolytic activity, as lactate produced per min and protein quantity, which suggests that this system can also be used to assay glycolytic activity in tissue extracts. Specific glycolytic activity found, as mumol of L-lactate produced per min, per protein mg was 0.1 for muscle and 0.01 for liver.  相似文献   

11.
Valérie Desquiret 《BBA》2006,1757(1):21-30
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 μM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

12.
A mitochondrial fraction prepared from calf brain cortex possessed negligible glycolytic activity in the absence of the enzymes of the high speed supernatant fraction. When mitochondria were added to a supernatant system supplemented with optimal amounts of crystalline hexokinase, a 20 per cent stimulation of glycolysis was observed. The supernatant fraction produced minimal amounts of lactate in the absence of exogenous hexokinase; the addition of mitochondria doubled the lactate production. The substitution of glycolytic intermediates for glucose as substrates as well as the addition of exogenous glycolytic enzymes to the supernatant fraction or supernatant fraction plus mitochondria indicated that the mitochondria contributed mainly hexokinase and phosphofructokinase. By direct assay of all of the enzymes of the glycolytic pathway, only hexokinase and phosphofructokinase were shown to be concentrated in the mitochondrial fraction. All other glycolytic enzymes were found to exhibit higher total and specific activities in the supernatant fraction.  相似文献   

13.
The antibiotic pentalenolactone, a specific inhibitor of glyceraldehydephosphate dehydrogenase, was used to investigate the effect of glycolytic adenosine triphosphate (ATP) synthesis on the survival response of aerobic and hypoxic Chinese hamster cells treated with 42 degrees C hyperthermia. Data obtained with aerobic cells, incubated in balanced salt solutions supplemented with different substrates for ATP production, showed that 50 microM pentalenolactone blocked ATP synthesis via glycolysis but not by oxidative phosphorylation. The glycolytic inhibition was reversed upon transfer of the cells to antibiotic-free medium, and minimal cytotoxicity (less than 20 per cent) was observed. Hypoxic cultures were obtained by incubating dense cell suspensions (2 X 10(6)/ml) to produce metabolic oxygen depletion. Concomitant with the development of hypoxia, pentalenolactone-treated cells became ATP-depleted; cellular ATP levels were reduced by about 70-fold as compared to hypoxic cells in the antibiotic-free medium. The ATP-depleted cells were more sensitive to killing by hyperthermia. Comparison of the 42 degrees C survival curves for control and the antibiotic-treated hypoxic cells yielded a dose-modifying factor of 4 (5 per cent survival level). The results indicate that inhibition of glycolytic ATP synthesis, for example by pentalenolactone, can selectively sensitize hypoxic cells to the lethal effects of mild hyperthermia.  相似文献   

14.
Carbohydrate metabolism in the isolated perfused rat kidney   总被引:1,自引:1,他引:0  
1. Anaerobic formation of lactate from glucose by isolated perfused rat kidney (411mumol/h per g dry wt.) was three times as fast as in aerobic conditions (138mumol/h per g). 2. In aerobic or in anaerobic conditions, the ratio of lactate production to glucose utilization was about 2. 3. Starvation or acidosis caused a decline of about 30% in the rate of aerobic glycolysis. 4. The rate of formation of glucose from lactate by perfused kidney from a well-fed rat, in the presence of 5mm-acetoacetate (83mumol/h per g dry wt.), was of the same order as the rate of aerobic glycolysis. 5. During perfusion with physiological concentrations of glucose (5mm) and lactate (2mm) there were negligible changes in the concentration of either substrate. 6. Comparison of kidneys perfused with lactate, from well-fed or starved rats, showed no major differences in contents of intermediates of gluconeogenesis. 7. The tissue concentrations of hexose monophosphates and C(3) phosphorylated glycolytic intermediates (except triose phosphate) were decreased in anaerobic conditions. 8. Aerobic metabolism of fructose by perfused kidney was rapid: the rate of glucose formation was 726mumol/h per g dry wt. and of lactate formation 168mumol/h per g (dry wt.). Glycerol and d-glyceraldehyde were also released into the medium. 9. Aerobically, fructose generated high concentrations of glycolytic intermediates. 10. Anaerobic production of lactate from fructose (74mumol/h per g dry wt.) was slower than the aerobic rate. 11. In both anaerobic and aerobic conditions the ratio [lactate]/[pyruvate] in kidney or medium was lower during perfusion with fructose than with glucose. 12. These results are discussed in terms of the regulation of renal carbohydrate metabolism.  相似文献   

15.
The effect of certain metabolic inhibitors on the fusion of BHK-21 cells induced by vesicular stomatitis virus (VSV) was studied. The polykaryocyte formation in infected cells and virus growth were inhibited by 2-deoxy-D-glucose and D-glucosamine. Host-cell proteins synthesis was suppressed profoundly in both BHK-21-KB and B cells infected with VSV. On the other hand, glycoprotein synthesis was significantly enhanced during the polykaryocyte formation in BHK-21-KB cells, while it was suppressed in BHK-21-B cells which were not sensitive to cell fusion by VSV.  相似文献   

16.
In a previous report, evidence was presented that the deoxyribonucleic acid (DNA) of adenovirus type 12 (Ad12) is integrated by covalent linkage into the DNA of baby hamster kidney cells (BHK-21 cells). These studies have been extended. The DNA of Ad12 and that of BHK-21 cells grown in medium containing 5-bromodeoxyuridine could be separated by equilibrium centrifugation in alkaline CsCl density gradients. BHK-21 cells were infected with (3)H-labeled Ad12, and the total intracellular DNA was analyzed at various times after infection in alkaline CsCl density gradients. The (3)H label in the position of cellular DNA hybridized predominantly with viral DNA and to a lesser extent also with cellular DNA. Replication of viral DNA could not be detected in BHK-21 cells. The appearance of viral (3)H label in the density stratum of cellular DNA was not significantly affected when DNA synthesis in Ad12-infected BHK-21 cells was inhibited >96% by cytosine arabinoside. These findings provided additional evidence for integration of Ad12 DNA into the DNA of BHK-21 cells. It could be calculated that 5 to 55 Ad12 DNA equivalents per cell are integrated. Replication of viral or cellular DNA was not required for integration. Inhibition of protein or ribonucleic acid synthesis interfered with integration only slightly.  相似文献   

17.
The effect of adenosine was tested on the energetic metabolism of fed rat liver cells after isolation. The cells were incubated in a buffered saline medium with glucose (5 mM) and adenosine (1 mM) for 30 minutes at 37°C. This increased the concentration of the adenylic nucleotides ATP (+ 57 per cent), ADP (+ 39 per cent). Cyclic AMP was increased (+ 50 per cent) and the intracellular inorganic phosphate decreased (− 22 per cent). These changes were accompanied by a decrease of glycogenolysis, glucose consumption and lactate production. Measurement of glycolytic intermediates showed decreased concentrations of fructose 1,6-bisphosphate and 3-phosphoglycerate proportional to the increase in ATP concentration. The near-equilibrium of the glyceraldehyde 3-phosphate dehydrogenase-phosphoglycerate kinase system was not modified by adenosine. The decrease of the NAD+/NADH ratio along with the increase of the ATP/ADP × PO4 ratio explains the decrease of 3-phosphoglycerate. The decrease in glucose consumption can be explained by the cross over at the phosphofructokinase stage with the decrease of fructose 1,6-bisphosphate. The major part of adenosine was deaminated as indicated by an increase in the production of ammonia and urea. The effects of inosine, or adenosine along with an inhibitor of adenosine deaminase (pentostatin) suggest that adenosine acts on the glucose consumption through adenylic nucleotides. However the increase of the adenylic nucleotide level cannot totally explain the other metabolic changes: decrease of the NAD+/NADH cytoplasmic ratio, constancy of this ratio in mitochondria, decrease of gluconeogenesis from lactate. A direct action of adenosine can therefore be expected.  相似文献   

18.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

19.
The presence of serum in cell culture raises safety problems for the production of biologicals, thus a new serum-free medium (MDSS2) was developed. The evaluation of this medium for the growth of different cell lines (BHK-21 C13, BSR and Vero) has shown that cells grew in this medium similarly to standard serum-containing medium, independently of the culture system used: in static (as monolayer) as well as in agitated systems (in suspension in spinner and perfusion reactors). BHK-21 and BSR cells grew as aggregate cultures and could proliferate in both static and agitated culture systems. Vero cells stayed attached to a substrate and proliferated equally in static and in agitated microcarrier-culture systems. The cell densities obtained with BHK-21 cells depended only on the culture system used. They ranged from 2–3×106 to 6–12×106 cells per ml for static batch and perfusion reactor cultures respectively. The cell concentration was 3 to 6 times higher than in classical cultures performed in serum-containing medium. The cell densities obtained with Vero cells were indistinguishable from those obtained in serum-containing medium, whatever the cell culture system used. These cell lines have been used for the production of rabies virus. With respect to BHK-21 and BSR, similar production rates of rabies glycoprotein have been found as in the standard roller bottle process. The production of rabies virus and of viral glycoprotein by Vero cells cultivated in serum-free medium was augmented 1.5-fold and 2.5-fold, respectively, when compared to serum-containing medium.A recombinant BHK-21 cell line, producing human IL-2, can also proliferate in MDSS2, after addition of insulin. The specific IL-2 production rate was augmented 3–4 fold in comparison to serum-containing medium.For the cells tested, the MDSS2 serum-free medium is a good growth and production medium. Its use for cultivating other cell lines and/or for the production of other biologicals is discussed.  相似文献   

20.
The capacity for gluconeogenesis in the isolated amphibian retina was found to be approx. 70-fold greater with lactate than with glutamate as the gluconeogenic precursor, 1426 versus 21 pmol of glucose incorporated into glycogen/h per mg of protein. It was also found that 11-15% of the glucosyl units in glycogen are derived from C3 metabolites of the glycolytic pathway, suggesting that lactate is recycled within the retina. In concert with these metabolic observations, a full complement of the gluconeogenic enzymes was detected in retinal homogenates. These included: glucose-6-phosphatase, fructose-1,6-bisphosphatase, acetyl-CoA-dependent pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Agents that regulate the rate of gluconeogenesis in hepatic tissue were tested on the retina. At concentrations of glutamate and lactate that are presumed to be relevant physiologically, it was found that vasoactive intestinal peptide, ionophore A23187 and elevated [K+] each enhanced the rate of gluconeogenesis in Ringer containing 50 microM-glutamate, whereas in Ringer containing 8.5 mM-lactate these agents inhibited the rate of gluconeogenesis. Further, it was found that the classic gluconeogenic hormone glucagon inhibited gluconeogenesis in both glutamate- and lactate-containing Ringer. Retinal energy metabolism was found to be altered in lactate-containing Ringer, in that lactate production was suppressed completely. In addition, glycogen metabolism appeared to be dependent on increased cytosolic Ca2+ and was insensitive to increased retinal cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号