首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Bioluminescence in the dinoflagellate Gonyaulax polyedra occurs as brief bright flashes, originating from many (~400) small (~0.5 μm) cytoplasmic organelles which protrude into the acidic vacuole, and are thus surrounded by the tonoplast. Biochemically, the substrate is unusual; it is an open chain tetrapyrrole, highly unstable to air but protected in the cell at pH? 8 by virtue of a luciferin binding protein (LBP). This molecule is a dimer of 72 kDa subunits which, upon a decrease in pH, releases luciferin to react with oxygen in the luciferase (~140 kDa) catalysed luminescent reaction. cDNAs for both luciferase and LBP have been isolated and cloned, and the identity of LBP was confirmed by hybrid selection and in vitro translation of the message. The tenfold circadian (day to night) change in the amount of LBP, which parallels the in vivo rhythm of luminescence, is due to de novo synthesis and subsequent degradation of the protein each day. The LBP mRNA levels, as determined by in vitro translations and by Northern hybridizations, do not vary over the daily cycle, indicating that circadian control of bioluminescence in this species is mediated at the level of translation.  相似文献   

2.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid”, Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189–197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6–2 µm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 °C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-γ-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

3.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the "firefly squid", Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189-197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6-2 microm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 degrees C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-gamma-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

4.
Nass N  Scheel D 《Planta》2001,212(2):149-154
In-vivo imaging of transgenic tobacco plants (Nicotiana tobacum L.) expressing firefly luciferase under the control of the Arabidopsis phenylalanine ammonia-lyase 1 (PAL1)-promoter showed that luciferase-catalyzed light emission began immediately after the substrate luciferin was sprayed onto the leaves and reached a plateau phase after approximately 60 min. This luminescence could easily be detected for up to 24 h after luciferin application although the light intensity declined continuously during this period. A strong and rapid increase in light emission was observed within the first minutes after wounding of luciferin-sprayed leaves. However, these data did not correlate with luciferase activity analysed by an in-vitro enzyme assay. In addition, Arabidopsis plants expressing luciferase under the control of the constitutive 35S-promoter showed similar wound-induced light emission. In experiments in which only parts of the leaves were sprayed with luciferin solutions, it was shown that increased uptake of luciferin at the wound site and its transport through vascular tissue were the main reasons for the rapid burst of light produced by preformed luciferase activity. These data demonstrate that there are barriers that restrict luciferin entry into adult plants, and that luciferin availability can be a limiting factor in non-invasive luciferase assays. Received: 11 March 2000 / Accepted: 16 May 2000  相似文献   

5.
Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin.  相似文献   

6.
Interestingly, only the D-form of firefly luciferin produces light by luciferin–luciferase (L–L) reaction. Certain firefly luciferin analogues with modified structures maintain bioluminescence (BL) activity; however, all L-form luciferin analogues show no BL activity. To this date, our group has developed luciferin analogues with moderate BL activity that produce light of various wavelengths. For in vivo bioluminescence imaging, one of the important factors for detection sensitivity is tissue permeability of the number of photons emitted by L–L reaction, and the wavelengths of light in the near-infrared (NIR) range (700–900 nm) are most appropriate for the purpose. Some NIR luciferin analogues by us had performance for in vivo experiments to make it possible to detect photons from deep target tissues in mice with high sensitivity, whereas only a few of them can produce NIR light by the L–L reactions with wild-type luciferase and/or mutant luciferase. Based on the structure–activity relationships, we designed and synthesized here a luciferin analogue with the 5-allyl-6-dimethylamino-2-naphthylethenyl moiety. This analogue exhibited NIR BL emissions with wild-type luciferase (λmax = 705 nm) and mutant luciferase AlaLuc (λmax = 655 nm).  相似文献   

7.
1. The rapid decay of luminescence in extracts of the ostracod crustacean Cypridina hilgendorfii, has been studied by means of a photoelectric-amplifier-string galvanometer recording system. 2. For rapid flashes of luminescence, the decay is logarithmic if ratio of luciferin to luciferase is small; logarithmic plus an initial flash, if ratio of luciferin to luciferase is greater than five. The logarithmic plot of luminescence intensity against time is concave to time axis if ratio of luciferin to luciferase is very large. 3. The velocity constant of rapid flashes of luminescence is approximately proportional to enzyme concentration, is independent of luciferin concentration, and varies approximately inversely as the square root of the total luciferin (luciferin + oxyluciferin) concentration. For large total luciferin concentrations, the velocity constant is almost independent of the total luciferin. 4. The variation of velocity constant with total luciferin concentration (luciferin + oxyluciferin) and its independence of luciferin concentration is explained by assuming that light intensity is a measure of the luciferin molecules which become activated to oxidize (accompanied with luminescence) by adsorption on luciferase. The adsorption equilibrium is the same for luciferin and oxyluciferin and determines the velocity constant.  相似文献   

8.
In order to improve calibration of firefly luciferase signals obtained by injecting the enzyme into single, isolated heart and liver cells we have investigated why the luminescence from cells is greatly depressed compared with in vitro (in mammalian ionic milieu) and why the decay of the intracellular signal is remarkably slow. We have shown that inorganic pyrophosphate greatly depresses the signal in vitro and that micromolar concentrations of inoragnic pyrophosphate, comparable with that in cytoplasm, reverse this inhibition and stabilize the signal, eliminating its decay. Higher concentrations of pyrophosphate depress the signal by inhibiting ATP-binding to luciferase. Luciferse-injected cells exposed to extracellular luciferin concentrations above about 100 μmol/1 (corresponding to a cytoplasmic level of c. 5–10 μmol/1 because of a transplasmalemmal gradient) show a gradual, irreversible loss of signal. We attribute this phenomenon (which is not seen in vitro) to the gradual accumlation of a luminescently inactive, irreversible, luciferase-oxyluciferin complex. At low luciferin levels this complex is prevented from forming by cytoplasmic pyrophosphate. Above c. 100μmol/1 extracellular luciferin, the pyrophosphate level in the cytoplasm fails to fully prevent the complex forming. In vitro this phenomenon does not occur because the luciferase concentrations and hence oxyluciferin levels are orders of magnitude lower than in cells injected with concentrated luciferase solutions, which have a cytoplasmic luciferase concentration of approximately 2-4 μmol/1.  相似文献   

9.
The contents of firefly luciferin in luminous and non-luminous beetles were determined by the methods of HPLC with fluorescence detection and the luminescence reaction of luciferin and firefly luciferase. Luminous cantharoids and elaterids contained various amounts of luciferin in the range of pmol to hundreds of nmol, but no luciferin was detected in the non-luminous cantharoids and elaterids.  相似文献   

10.
The contents of firefly luciferin in luminous and non-luminous beetles were determined by the methods of HPLC with fluorescence detection and the luminescence reaction of luciferin and firefly luciferase. Luminous cantharoids and elaterids contained various amounts of luciferin in the range of pmol to hundreds of nmol, but no luciferin was detected in the non-luminous cantharoids and elaterids.  相似文献   

11.
The luminescence of the dinoflagellate Pyrocystis lunula is controlled by the reduction state of the luciferin precursor. This molecule (P630) is a chromopeptide more stable than luciferin in methanolic solutions at low temperature. Cations may oxidize P630 or cleave the bond between the peptidic chain and the extended tetrapyrrole. Reduction of P630 is performed enzymatically by a NAD(P)H-dependent oxidoreductase or chemically by 2-mercaptoethanol or dithiothreitol. The state of reduction is monitored by the absorption and fluorescence emission which reveal a conformational change of the chromopeptide depending on the pH. These data will be useful for forthcoming studies on intracellular reducing power regulation and luminescence rhythms of these cells.  相似文献   

12.
Bioluminescence has gained favour in the last decade as an approach for observing tumours in vivo in a non‐destructive manner. This very sensitive technique is based on light emission by the reaction of luciferin with the enzyme luciferase, as measured by a photodetector. Ever since the development of recombinant tumour cell lines that have been engineered to produce luciferase, a vast number of experiments have been carried out examining tumour growth, tumour metastasis and the effect of therapeutic regimens in such cases. A primary stumbling block, however, is the relatively short circulatory half‐life of luciferin. In this paper, we propose the PEGylation of 6‐amino‐d ‐luciferin to extend its in vivo circulatory half‐life, thus making the possibility of long‐term observations in animals possible. The covalent attachment was through a carbamate linker that is known to hydrolyse in vivo, releasing the parent compound. Based on our studies, longer emission of the PEGylated luciferin was observed, as compared to free luciferin in mice bearing PC3 prostate tumours expressing luciferase. This result suggests that this reagent can be used in applications requiring extended monitoring of luciferase activation in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

14.
We have generated new sensors for the specific detection and studies of bioavailability of metals by engineering Pseudomonas fluorescens with reporter gene systems. One broad host range mercury (pTPT11) and two arsenite (pTPT21 and pTPT31) sensor plasmids that express metal presence by luminescence phenotype were constructed and transferred into Escherichia coli DH5α and Pseudomonas fluorescens OS8. The maximal induction was reached after 2 h of incubation in metal solutions at room temperature (22°C). In optimized conditions the half maximal velocity of reaction was achieved at acidic pH using a d-luciferin substrate concentration that was nearly sixfold lower for P. fluorescens OS8 than for E. coli DH5α. When using a luciferin concentration (150 μM) that was optimal for E. coli the luminescence declined rapidly in the case of Pseudomonas, for which the substrate level 25 μM gave a stable reading between about 20 min and 3 h. The ability of the strain OS8 to quantitatively detect specific heavy metals in spiked soil and soil extracts is as good, or even better in being a real-time reporter system, than that of a traditional chemical analysis. The Pseudomonas strain used is an isolate from pine rhizosphere in oil and heavy metal contaminated soil. It is also a good humus soil colonizer and is therefore a good candidate for measuring soil heavy metal bioavailability.  相似文献   

15.
The luciferase preparation obtained from fireflies Luciola mingrelica has entrapped into the human erythrocytes by means of reversible osmotic lysis. The addition of luciferin to such erythrocytes leads to the appearance of luminescence, conditioned by the entrance of luciferin into the cells. Luciferin is uniformly distributed between cells and external medium. Luciferin transport through the erythrocyte membrane is a result of simple diffusion. Values of rate constant of luciferin transport through the membrane lie between 0.009-0.021 l/s 1 cells for erythrocytes of different donors. The maximum luminescence intensity increases monotonously with rise of temperature and luciferin concentration. The dependence of the maximum luminescence intensity on luciferin concentration is described by Michaelis kinetics. Obtained in different experiments, values of luciferase Michaelis constant for luciferin inside erythrocytes lie between 4.1-21.5 microM. Luminescence intensity of the luciferase containing erythrocytes depends on the intracellular ATP concentration. Under the same luciferin concentration the correlation of luminescence intensities of control erythrocytes with normal ATP level and erythrocytes depleted without glucose is near to correlation of their ATP concentrations. After the addition of glucose to the depleted erythrocytes their ATP concentration rises and luminescence intensity approaches to the level of control erythrocytes. Luciferase entrapment permit one to control rapid ATP concentration changes in the erythrocytes.  相似文献   

16.

Background

Bioluminescence in fireflies and click beetles is produced by a luciferase-luciferin reaction. The luminescence property and protein structure of firefly luciferase have been investigated, and its cDNA has been used for various assay systems. The chemical structure of firefly luciferin was identified as the ᴅ-form in 1963 and studies on the biosynthesis of firefly luciferin began early in the 1970’s. Incorporation experiments using 14C-labeled compounds were performed, and cysteine and benzoquinone/hydroquinone were proposed to be biosynthetic component for firefly luciferin. However, there have been no clear conclusions regarding the biosynthetic components of firefly luciferin over 30 years.

Methodology/Principal Findings

Incorporation studies were performed by injecting stable isotope-labeled compounds, including ʟ-[U-13C3]-cysteine, ʟ-[1-13C]-cysteine, ʟ-[3-13C]-cysteine, 1,4-[D6]-hydroquinone, and p-[2,3,5,6-D]-benzoquinone, into the adult lantern of the living Japanese firefly Luciola lateralis. After extracting firefly luciferin from the lantern, the incorporation of stable isotope-labeled compounds into firefly luciferin was identified by LC/ESI-TOF-MS. The positions of the stable isotope atoms in firefly luciferin were determined by the mass fragmentation of firefly luciferin.

Conclusions

We demonstrated for the first time that ᴅ- and ʟ-firefly luciferins are biosynthesized in the lantern of the adult firefly from two ʟ-cysteine molecules with p-benzoquinone/1,4-hydroquinone, accompanied by the decarboxylation of ʟ-cysteine.  相似文献   

17.
The small Japanese “firefly squid,” Watasenia scintillans, emits a bluish luminescence from dermal photogenic organs distributed along the ventral aspects of the head, mantle, funnel, arms and eyes. The brightest light is emitted by a cluster of three tiny organs located at the tip of each of the fourth pair of arms. Studies of extracts of the arm organs show that the light is due to a luciferin-luciferase reaction in which the luciferase is membrane-bound. The other components of the reaction are coelenterazine disulfate (luciferin), ATP, Mg2+, and molecular oxygen. Based on the results, a reaction scheme is proposed which involves a rapid base/luciferase-catalyzed enolization of the keto group of the C-3 carbon of luciferin, followed by an adenylation of the enol group by ATP. The AMP serves as a recognition moiety for docking the substrate molecule to a luciferase bound to membrane, after which AMP is cleaved and a four-membered dioxetanone intermediate is formed by the addition of molecular oxygen. The intermediate then spontaneously decomposes to yield CO2 and coelenteramide disulfate (oxyluciferin) in the excited state, which serves as the light emitter in the reaction.  相似文献   

18.
Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.  相似文献   

19.
The oxidation-reduction potential of the Cypridina luciferin-oxyluciferin system determined by a method of "bracketing" lies somewhere between that of anthraquinone 2-6-di Na sulfonate (Eo '' at pH of 7.7 = –.22) which reduces luciferin, and quinhydrone (Eo '' at pH of 7.7 = +.24), which oxidizes luciferin. Systems having an Eo '' value between –.22 and +.24 volt neither reduce oxyluciferin nor oxidize luciferin. If the luciferin-oxyluciferin system were truly reversible considerable reduction and oxidation should occur between –.22 and +.24. The system appears to be an irreversible one, with both "apparent oxidation" and "apparent reduction potentials" in Conant''s sense. Hydrosulfites, sulfides, CrCl2, TiCl3, and nascent hydrogen reduce oxyluciferin readily in absence of oxygen but without luminescence. Luminescence only appears in water solution if luciferin is oxidized by dissolved oxygen in presence of luciferase. Rapid oxidation of luciferin by oxygen without luciferase or oxidation by K3Fe(CN)6 in presence of luciferase but without oxygen never gives luminescence.  相似文献   

20.
Thein vivo pattern of firefly luciferase expression in transgenic plants   总被引:5,自引:0,他引:5  
Expression of the firefly luciferase gene in transgenic plants produces light emission patterns when the plants are supplied with luciferin. We explored whether inin vivo pattern of light emission truly reveals the pattern of luciferase gene expression or whether it reflects other parameters such as the availability of the substrate, luciferin, or the tissue-specific distribution of organelles in which luciferase was localized. The tissue-specific distribution of luciferase activity and thein vivo pattern of light were examined when the luciferase gene was driven by different promoters and when luciferase was redirected from the peroxisome, where it is normally targeted, to the chloroplast compartment. It was found that the distribution of luciferase activity closely correlated with the tissue-specific pattern of luciferase mRNA. However, thein vivo light pattern appeared to reflect not only tissue-specific distribution of luciferase activity, but also the pattern of luciferin uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号