首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 613 毫秒
1.
A carrot somatic embryo mutant is rescued by chitinase.   总被引:30,自引:4,他引:26       下载免费PDF全文
At the nonpermissive temperature, somatic embryogenesis of the temperature-sensitive (ts) carrot cell mutant ts11 does not proceed beyond the globular stage. This developmental arrest can be lifted by the addition of proteins secreted by wild-type cells to the culture medium. From this mixture of secreted proteins, a 32-kD glycoprotein, designated extracellular protein 3 (EP3), that allows completion of somatic embryo development in ts11 at the nonpermissive temperature was purified. On the basis of peptide sequences and biochemical characterization, EP3 was identified as a glycosylated acidic endochitinase. The addition of the 32-kD endochitinase to ts11 embryo cultures at the nonpermissive temperature appeared to promote the formation of a correctly formed embryo protoderm. These results imply that a glycosylated acidic endochitinase has an important function in early plant somatic embryo development.  相似文献   

2.
Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant   总被引:12,自引:5,他引:7       下载免费PDF全文
At a nonpermissive temperature, somatic embryos of the temperature-sensitive (ts) carrot cell mutant ts11 only proceed beyond the globular embryo stage in the presence of medium conditioned by wild-type embryos. The causative component in the conditioned medium has previously been identified as a 32-kD acidic endochitinase. In search of a function for this enzyme in plant embryogenesis, several compounds that contain oligomers of N-acetylglucosamine were tested for their ability to promote ts11 embryo formation. Of these compounds, only the Rhizobium lipooligosaccharides or nodulation (Nod) factors were found to be effective in rescuing the formation of ts11 embryos. These results suggest that N-acetylglucosamine-containing lipooligosaccharides from bacterial origin can mimic the effect of the carrot endochitinase. This endochitinase may therefore be involved in the generation of plant analogs of the Rhizobium Nod factors.  相似文献   

3.
Summary The temperature-sensitive carrot cell variant ts11c, arrested in somatic embryogenesis after the globular stage, was characterized. The sensitivity to a shift from 24° C (permissive temperature) to 32° C (non-permissive temperature) is greatest at the globular stage of embryogenesis, while cells proliferating in unorganized fashion and plantlets are not affected. Embryogenesis in ts11c is also arrested at the permissive temperature by replacement of conditioned culture medium with fresh medium. The timing of sensitivity of ts11c to medium replacement coincides with the sensitivity to temperature shift. Both sensitivities are recessive in somatic hybrids between ts11c and wild-type cells. Extracellular glycoproteins synthesized by ts11c at the non-permissive temperature contain much less fucose than those synthesized by the wild type. The glycoproteins synthesized by the variant under non-permissive conditions do not accumulate at the periphery of the embryo, as their wildtype counterparts do, but instead show a diffuse distribution throughout the embryo. The defect in ts11c can be fully complemented by the addition of extracellular wild-type proteins. A revertant of ts11c was isolated that simultaneously reacquired temperature insensitivity and normal glycosylation ability. Collectively, these observations indicate that ts11c is not able to perform proper glycosylation at the non-permissive temperature and suggest that the activity of certain extracellular proteins, essential for the transition of globular to heart stage somatic embryos, depends on the correct modification of their oligosaccharide side-chains.  相似文献   

4.
D J Roufa 《Cell》1978,13(1):129-138
ts14 is a temperature-sensitive Chinese hamster lung cell mutant that ceases protein biosynthesis within a short time of transfer to nonpermissive temperature (Haralson and Roufa, 1975; Roufa and Haralson, 1975; Roufa and Reed, 1975). This mutant contains a revertible, presumably a point mutation that renders its 60S ribosomal subunit thermolabile (Haralson and Roufa, 1975). In this report, we describe the relationship between the conditional ability of ts14 to synthesize protein during S phase and the replication of its DNA.After transfer to nonpermissive temperature (39°C), where ts14 synthesizes protein at a rate approximately 20 fold less than wild-type cells, synchronous cultures of the mutant performed all the processes required for replication of their DNA. During prolonged incubations at nonpermissive temperature, S phase ts14 completed approximately one round of DNA replication semi-conservatively as judged by density-transfer experiments. Pulse-labeling experiments performed on S phase cells revealed that ts14 synthesized the intermediates of discontinuous DNA replication at nonpermissive and permissive temperatures at similar rates. In these tests, the mutant was not substantially different from wild-type at both culture temperatures. At the nonpermissive temperature, however, ts14 synthesized significantly less nuclear protein (that is, histone) than did wild-type cells, and the mutant's chromatin appeared deficient in histone by virtue of its increased sensitivity to nuclease.  相似文献   

5.
The preliminary characterization of a unique temperature-sensitive (ts) mutant of bacteriophage SH-133, designatedts18, is reported. The mutant showed a substantial reduction in the ability to form plaques at the nonpermissive temperature (32°C) when compared with its plaqueforming ability at the permissive temperature (27°C). However, the supernatant fromts18-infected cells grown at 32°C exhibited significant infectivity when assayed at 27°C, which indicates that the reduced titer ofts18 at 32°C is not due to its inability to form phage particles at that temperature. Phage particles produced at 32°C, but not at 27°C, were thermolabile when tested at 32°C. The thermolability of phage yields from cells mixedly infected at 32°C with increasing wild-type/ts18 input ratios was independent of the quantity of wild-type gene product per cell. Thermostable phage particles were yielded byts18-infected cells that received short pulses of permissive temperature during the latter part of the latent period. These data indicate that the defect of the mutant is due to the production of a nonstructural assembly protein that misfunctions when viral maturation proceeds at the nonpermissive temperature.  相似文献   

6.
The effect of temperature shiftdown on the assembly of ts3 virions was investigated by both scanning (SEM) and transmission (TEM) electron microscopy. Ts3 is a spontaneous temperature-sensitive mutant of Moloney murine leukemia virus (Mo-MuLV) which previous studies indicated to be defective in assembly or release of the virions. In the present study, both SEM and TEM revealed the following: (i) there were more cell-associated virions in ts3-infected cells grown at the nonpermissive temperature (39 degrees C) than either in cells grown at the permissive temperature (34 degrees C) or in wild-type MuLV-infected cells grown at 39 degrees C; (ii) there were more normal single particles than multiploids (virions with two or more pieces of genomic RNA) in ts3-infected cells grown at the nonpermissive temperature; (iii) there were more multiploids in ts3-infected cells grown at the nonpermissive temperature than either in cells grown at the permissive temperature or in wild-type MuLV-infected cells grown at the nonpermissive temperature; (iv) upon temperature shift from 39 to 34 degrees C, about 90% of the cell-associated virions dissociated from the cell surface. TEM studies also indicated that upon temperature shiftdown, virion assembly rapidly occurred. The above observations suggest that faulty assembly, which results in the production of multiploids, may not be the reason why ts3 virions accumulate on the cell surface at the nonpermissive temperature. The relatively higher proportion of multiploids found in ts3-infected cells grown at 39 degrees C compared with those grown at 34 degrees C may be due to the higher density of budding virions at the cell surface at the nonpermissive temperature, which increases the possibility of two or more particles assembling close to one another. The accumulation of ts3 virions in all stages of assembly at the nonpermissive temperature, together with the fact that rapid assembly and release of ts3 virions occurred on temperature shiftdown, indicates that virion assembly is restricted after it has been initiated. The probable role of altered glycoprotein(s) in restricting virion assembly is discussed.  相似文献   

7.
ts7, a temperature-sensitive mutant defective in neuraminidase (NA) of influenza B/Kanagawa/73, lacks NA enzymatic activity at the nonpermissive temperature (37.5 C). When MDCK cells were infected with the mutant at the permissive temperature (32 C) and exposed to pH 5.2 medium, extensive cell fusion occurred. In contrast, at the nonpermissive temperature cells did not show cell fusion at all unless they were pretreated with trypsin, suggesting that at 37.5 C the hemagglutinin (HA) of ts7 is expressed at the cell surface in an uncleaved form. It was also found that the replacement of RNA segment 6 of ts7 with that of wild-type B/Lee resulted in the emergence of low pH-induced fusion activity as well as NA enzymatic activity at the incubation temperature of 37.5 C and that the addition of bacterial NA to the cultures infected with ts7 at 37.5 C early in infection brought about low pH-induced cell fusion. We suggest that the removal of neuraminic acid from the carbohydrate moiety of HA by NA is essential for the cleavage of HA by cellular protease.  相似文献   

8.
G Poste  M K Flood 《Cell》1979,17(4):789-800
Chick embryo (CE) fibroblasts and normal rat kidney (NRK) cells transformed by temperature-sensitive (ts) mutants of avian sarcoma virus (NY68, LA23, LA24, LA25, LA29, LA31, GI201, GI202, GI251, GI253 induce tumors on the chorioallantoic membrane (CAM) of chick eggs at temperatures that correspond to the permissive and nonpermissive temperatures used to induce conditional expression of the "transformed" phenotype in these cells when cultured in vitro. Chick embryo cells infected with transformation-defective mutants of ASV (td101, td108) or RAV-50 were nontumorigenic under the same conditions, as were nontransformed CE and NRK cells. This indicates that the CAM is not an unusually susceptible substrate for cell growth and that the ability of tsASV-transformed cells to form tumors at nonpermissive temperatures reflects their true tumorigenicity. In contrast, a ts mutant chemically transformed rat liver cell line, ts-223, only formed tumors on the CAM under permissive conditions. The wild-type parent cells (W-8) of this mutant produced tumors at both permissive and nonpermissive temperatures. Direct implantation of microprobe thermometers into tumors caused by ts-ASV-transformed cells at nonpermissive temperatures confirmed that tumor formation occurred in a stable temperature environment and was not due to temperature fluctuations which might have created semi-permissive conditions for tumor growth. Cells isolated from tumors formed at nonpermissive temperatures and recultured in vitro displayed temperature-dependent hexose transport and colony formation in agar similar to the orginal parent cell inoculum. Similarly, virus recovered from tumors at nonpermissive temperatures retained the ts mutation.  相似文献   

9.
BHK cells infected with the temperature-sensitive mutant ts13 of herpes simplex virus type 2 at a nonpermissive temperature lack the alkaline nuclease activity, which is induced by the mutant at a permissive temperature and by wild-type virus at either temperature. For ts13, enzyme activity could be induced by a temperature shift to permissive conditions, but not in the presence of cycloheximide. After a shift from permissive to nonpermissive conditions in the presence of cycloheximide, the activity was stable in wild-type, but not in mutant-infected, cells. After extensive purification, the wild-type nuclease was fourfold more heat stable in the presence of substrate than was the mutant enzyme. Mixtures of both purified enzymes showed the predicted intermediate stabilities. The results strongly suggest that the enzyme is virus coded and that the mutant possesses a lesion in the structural gene of the enzyme.  相似文献   

10.
Role of simian virus 40 gene A function in maintenance of transformation.   总被引:108,自引:73,他引:35       下载免费PDF全文
Mouse, hamster, and human cells were transformed at the permissive temperature by mutants from simian virus 40 (SV40) complementation group A in order to ascertain the role of the gene A function in transformation. The following parameters of transformation were monitored with the transformed cells under permissive and nonpermissive conditions: morphology; saturation density; colony formation on plastic, on cell monolayers, and in soft agar; uptake of hexose; and the expression of SV40 tumor (T) and surface (S) antigens. Cells transformed by the temperature-sensitive (ts) mutants exhibited the phenotype of transformed cells at the nonrestrictive temperature for all of the parameters studied. However, when grown at the restrictive temperature, they were phenotypically similar to normal, untransformed cells. Growth curves showed that the (ts) A mutant-transformed cells exhibited the growth characteristics of wild-type virus-transformed cells at the permissive temperature and resembled normal cells when placed under restrictive conditions. There were 3-to 51-fold reductions in the levels of saturation density, colony formation, and uptake of hexose when the mutant-transformed cells were the elevated temperature as compared to when they were grown at the permissive temperature. Mutant-transformed cells from the nonpermissive temperature were able to produce transformed foci when shifted down to permissive conditions, indicating that the phenotypically reverted cells were still viable and that the reversion was a reversible event. SV40 T antigen was present in the cells at both temperatures, but S antigen was not detected in cells maintained at the nonpremissive temperature. All of the wild-type virus-transformed cells exhbited a transformed cells exhibited a transformed phenotype when grown under either restrictive or nonrestrictive conditions. Thers results indicate that the SV40 group A mutant-transformed cells are temperature sensitive for the maintenance of growth properties characteristics of transformation. Virus rescued from the mutant-transformed cells by the transfection method was ts, suggesting that the SV40 gene A function, rather than a cellular one, is responsible for the ts behavior of the cells.  相似文献   

11.
Rat (3Y1) and hamster embryo brain cells were transformed by wild-type adenovirus type 12 or the DNA-minus temperature-sensitive mutant ts401. The ts401-transformed 3Y1 cells, but not the wild-type transformants, displayed a temperature-sensitive response with respect to the following characteristics of the transformed phenotype: morphology, saturation density, growth rate, cloning in soft agar, colony formation on plastic at low cell densities in 1% serum medium, and the T antigen(s). Temperature shift-down experiments showed that the density-dependent inhibition of growth of the ts401-transformed cells was reversible, as was, to some extent, the low efficiency of colony formation at low cell densities in 1% serum. Examination of hamster transformants for their ability to clone in soft agar at permissive and nonpermissive temperatures showed that this property was temperature dependent, again only in the ts401 transformants and not in the wild-type transformants. Alteration in uptake of 2-deoxyglucose or in intracellular cyclic AMP content was not a characteristic of the adenovirus-transformed phenotype in the 3Y1 cells. The findings suggest that an active 401 function is required for maintenance of the adenovirus-transformed cell pheno-type.  相似文献   

12.
13.
Biochemical transformation assays of herpes simplex virus type 1 temperature-sensitive (ts) mutants distinguished three groups of mutants with regard to their thymidine kinase (TK) transforming ability: those incapable of transferring the TK gene at either the permissive or restrictive temperatures (group I); those resembling the wild-type virus, and therefore able to transform at both the permissive and nonpermissive temperatures (group II); and those that failed to transform or exhibited very low transformation frequencies at the permissive temperature but were able to transform at the nonpermissive temperature (group III). Two mutants in group II exhibited greatly enhanced transformation efficiency at the permissive temperature. The ts lesions in the majority of the mutants tested map between 0.30 and 0.60 units on the viral genome. Mutants with TK-positive (TK+), but DNA-negative, phenotypes at the nonpermissive temperature produced no TK+ transformants at the permissive temperature and only unstable transformants at the nonpermissive temperature. This suggests that a function which is required for viral DNA synthesis is also required to obtain stable expression or to transfer the TK+ gene or both when transfer is mediated by the entire viral genome.  相似文献   

14.
Y C Chen  M J Hayman  P K Vogt 《Cell》1977,11(3):513-521
Fibroblasts from European field vole (Microtus agrestis) and from normal rat kidney (NRK) have been infected by avian sarcoma virus mutants which are temperature-sensitive for the maintenance of transformation. These cells are transformed at 33 degrees C, but show normal cell characteristics in morphology, colony formation in agar, saturation density, sugar uptake and membrane proteins at 39 degrees C and 40 degrees C, the nonpermissive temperatures. Ts mutant virus was rescued from most of the ts transformed cell lines. NRK cells infected by avian sarcoma virus ts mutants and kept at the nonpermissive temperature can be transformed by wild-type avian sarcoma virus. The susceptibility of the temperature-sensitive NRK lines to this transformation is higher than the susceptibility of uninfected NRK at either permissive or nonpermissive temperature.  相似文献   

15.
We have exploited a recently characterized system of rat thyroid epithelial cells transformed by the wild-type (wt) and a temperature-sensitive (ts) mutant strain of the Kirsten murine sarcoma virus (Ki-MSV) in order to study the effects of the K-ras oncogene on the gene expression of differentiated thyroid epithelial cells. By using cDNAs isolated from normal thyroid glands as probes, we were able to identify three sets of cellular sequences whose expression is influenced by the v-K-ras oncogene. The first set of genes is irreversibly repressed by transformation with both the wt and the ts viruses. The second set of genes is repressed in the ts-Ki-MSV-transformed cells but not in the same cells grown at the nonpermissive temperature. A third set of genes is present at higher levels at the nonpermissive temperature than at the permissive temperature. This system has allowed us to isolate and characterize a number of cDNA clones belonging to each of these three sets of genes. These specific cDNAs are suitable probes to study phenotypical changes during transformation of epithelial cells.  相似文献   

16.
17.
We have shown that covalent conjugation of ubiquitin to proteins is temperature-sensitive in the mouse cell cycle mutant ts85 due to a specifically thermolabile ubiquitin-activating enzyme (accompanying paper). We show here that degradation of short-lived proteins is also temperature sensitive in ts85 , in contrast to wild-type and revertant cells. While more than 70% of the prelabeled abnormal proteins (containing amino acid analogs) or puromycyl peptides are degraded within 4 hr at the permissive temperature in both ts85 and wild-type cells, less than 15% are degraded in ts85 cells at the nonpermissive temperature. Degradation of abnormal proteins and puromycyl peptides in both ts85 cells and wild-type cells is nonlysosomal and ATP-dependent. Immunochemical analysis shows a strong and specific reduction in the levels of in vivo labeled ubiquitin-protein conjugates at the nonpermissive temperature in ts85 cells. Degradation of normal, short-lived proteins is also specifically temperature sensitive in ts85 . We suggest that the contribution of ubiquitin-independent pathways to the degradation of short-lived proteins in this higher eucaryotic cell is no more than 10%, and possibly less.  相似文献   

18.
Stage 21 to 22 chicken embryo limb bud cells were infected with a temperature-sensitive mutant of Rous sarcoma virus and were grown in culture. Although control, uninfected cells yielded definitive chondroblasts (by day 4) which initiated the synthesis of the cartilage-characteristic proteoglycan, the transformed cells grown at the permissive temperature failed to do so. These effects were fully reversible after a shift to the nonpermissive temperature. In addition, infected cells at the nonpermissive temperature expressed traits of terminal chondrogenic maturation 2 to 3 days earlier than parallel, uninfected cells. Thus, Rous sarcoma virus-induced transformation reversibly blocks terminal limb bud cell chondrogenesis in culture, at the nonpermissive temperature, viral infection may also induce intracellular or extracellular conditions which favor or accelerate the process of chondrogenic cell maturation.  相似文献   

19.
Lesions that promote reversion from a temperature-sensitive to a wild-type phenotype were induced in temperature-sensitive late mutants of SV40 virus by UV irradiation. When cultures infected with UV-irradiated temperature-sensitive mutants were grown for various times at permissive temperature (35 degrees C) and then at restrictive temperature (39 degrees C), the reversion frequency declined just before the onset of semiconservative DNA synthesis when DNA synthesis began at 32 degrees C. This can be explained by competition between reactions that lead to the onset of viral DNA synthesis and reactions that repair the lesions before the onset of viral DNA synthesis.  相似文献   

20.
Infection of cells with herpes simplex virus type 1 (HSV-1) induces high levels of deoxypyrimidine triphosphatase. The majority of the enzyme activity is found in infected cell nuclei. A similar activity is induced by HSV type 2 (HSV-2) which, in contrast to the HSV-1 enzyme, fractionates to more than 99% in the soluble cytoplasmic extract. Of a series of temperature-sensitive mutants of HSV-1 studied, only the immediate-early mutants in complementation group 1-2 (strain 17 mutants tsD and tsK and strain KOS mutant tsB2) induced reduced levels of triphosphatase at nonpermissive temperature. Of a series of temperature-sensitive mutants of HSV-2 strain HG52, ts9 and ts13 failed to induce wild-type levels of the enzyme at nonpermissive temperature; ts9 was the most defective mutant with regard to triphosphatase expression of both herpes simplex virus serotypes. After shift-up from permissive to nonpermissive temperature, triphosphatase activity in cells infected with ts9 decreased rapidly, whereas all other mutants continued to exhibit enzyme levels comparable with controls kept at the permissive temperature. The type 1-specific nuclear expression of the triphosphatase was mapped physically by the use of HSV-1 x HSV-2 intertypic recombinants, based on enzyme levels different by more than two orders of magnitude found in nuclei of HSV-1- and HSV-2-infected cells. The locus for the type-specific expression maps between 0.67 and 0.68 fractional length on the HSV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号