首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BESSESEN, DANIEL H, CONNIE L RUPP AND ROBERT H ECKEL. Trafficking of dietary fat in lean rats. Obes Res. 1995;3:191–203. Despite increasing interest in the role that fuel partitioning plays in determining body composition, the relative importance of oxidative versus storage pathways in the clearance of dietary fat remains unclear. A widely held view is that the primary destination of chylomicron triglyceride fatty acids (TGFA) is adipose tissue, and the primary source of lipid fuel for skeletal muscle is non-esterified fatty acids (NEFA). An alternate view is that muscle, not adipose tissue, is the primary site of TGFA clearance. This view is supported by estimates of the total lipoprotein lipase content of muscle and adipose tissue. To directly study the partitioning of dietary fat between oxidation and storage, 14C-labeled oleic acid was fed to Sprague Dawley rats and its metabolic fate followed over 30 days. Two hours after ingestion, more than 3.5 times as much label was found in skeletal muscle tissue (2.42 ± 0.45 nmols) and CO2 (0.25 ± 0.01 nmols) than was found in adipose tissue (0.71 ± 0.14 nmols). Intramuscular triglyceride was the lipid class most extensively labeled. After skeletal muscle, liver was the next most important site of TGFA clearance. Surprisingly a substantial quantity of label remained associated with the GI tract even 24 hours after ingestion. Between 2 and 10 days following ingestion there was a net decline in the C content of muscle, liver and GI tract, associated with a net rise in the 14C content of adipose tissue. These findings demonstrate: 1) the importance of skeletal muscle and liver in whole organism TGFA clearance, 2) the importance of intramuscular partitioning of lipid fuels between direct oxidation and storage as TG, 3) the potentially important role of the GI tract in the delivery of dietary fat to the circulation 10–24 hours following ingestion, and 4) the stability of adipose tissue as a storage site. The complex nature of the tissue-specific clearance of TGFA over time is perhaps better described by the term ‘trafficking’ than by the more commonly used term “partitioning.” Future studies of TGFA clearance combined with sampling of relevant tissues over time will provide insight into the specific roles that abnormalities in liver, muscle and adipose tissue TGFA metabolism play in the development of hypertriglyceridemic disorders and states of increased or reduced body weight.  相似文献   

2.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

3.
Injections of 5 micrograms estradiol benzoate (EB) for 5 days resulted in decreases in the rate of body weight gain in both lean (Fafa) and obese (fafa) Zucker rats. EB administration also resulted in significant induction of cytoplasmic progestin binding sites in both hypothalamic-preoptic area (H-POA) and adipose tissues from rats of both genotypes. However, EB treatment significantly decreased lipoprotein lipase (LPL) activity in adipose tissue from lean, but not obese, Zucker rats and the same treatment increased LPL activity in the uteri from lean, but not obese, Zucker rats. The data are discussed in terms of the metabolic and reproductive dysfunctions observed in the genetically obese rat.  相似文献   

4.
To clarify the role of acyl-CoA synthetase in development of obesity, the mRNA levels and activities were studied in Zucker fatty rats (fa/fa). In Zucker fatty rats compared with their lean littermates, marked enhancement of ACS were observed in adipose tissues. Obese/lean rats ratio of ACS activity and mRNA in abdominal subcutaneous fat (3.3- and 3.9-fold, respectively) were greater than in mesenteric fat (2.0- and 2.2-fold). The enhancement of ACS activity and mRNA in the liver of fatty rats (1.2- and 1.8-fold) were less than those in the adipose tissues. There were no enhancement of ACS activities and mRNA levels in heart tissue of the obese rats. LPL mRNA levels were also enhanced in adipose tissue of fatty rats and obese/lean ratio of LPL mRNA was also higher in abdominal subcutaneous fat than mesenteric fat (6.2- vs 3.1-fold). The larger obese/lean rats ratio of LPL and ACS parameters in abdominal subcutaneous fat than mesenteric fat may be related to the observation that the increase of subcutaneous fat weight was larger than that of mesenteric fat weight in fatty rats (21.1- vs 4.9-fold). Integrated enhancement of LPL and ACS gene expression in adipose tissue may play an important role in the development of obesity.  相似文献   

5.
The activity of lipoprotein lipase (LPL) was studied in interscapilar brown adipose tissue (BAT), epididymal white adipose tissue (WAT) and in the heart of lean and obese adult Zucker rats maintained at 22 degrees C or adapted to cold (10 degrees C). In WAT the specific activity per gram of tissue was lower in obese than in lean rats but the total activity within the tissue was three-fold higher. Cold acclimation did not modify total activity in either lean or obese rats. In BAT, but not in the heart, both specific and total activities were lower in obese than in lean animals. They were enhanced in both tissues following cold acclimation. Six-hour fasting led to a decrease in specific activity in WAT of lean rats but had no effect in obese animals; an increase was observed in BAT and heart of both genotypes. Insulin administration has no effect on activities in WAT in either 22 or 10 degrees C adapted obese rats. Norepinephrine administration stimulates LPL activity in BAT and heart of all groups. It is concluded that the lack of development of obesity previously observed in obese rats following cold acclimation is not due to a decreased capacity of lipid uptake by WAT. It might in part be due to an increased lipid oxidation in BAT.  相似文献   

6.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

7.
Adenylate cyclase activity was determined in membranes of liver, muscle, white adipose tissue, and brown adipose tissue (BAT) of lean (Fa/) and obese (fa/fa) Zucker rats. Responses were monitored following beta-adrenergic receptor stimulation and addition of GTP, GTP gamma S, or forskolin. beta-Adrenergic responses in liver, white adipose tissue, and BAT were lower in obese than in lean animals. No such difference was observed in muscle membranes. Production of cAMP after addition of guanine nucleotides was lower in liver and white adipose tissue membranes from obese rats compared with their lean littermates. Synthesis of cAMP in muscle membranes of obese animals after addition of GTP was either not different, or slightly higher, than that observed in muscle membranes from lean animals. Furthermore, production of cAMP after forskolin addition to muscle membranes of obese rats was significantly higher than that observed from lean rats under the same conditions. Interestingly, BAT membranes of obese rats were significantly more sensitive to guanine nucleotide activation than those of lean animals. The results confirm recent findings indicating inferior function of G proteins in liver plasma membranes of obese Zucker rats, and extend this observation to adipose tissue. The present results further suggest that the "nonreceptor" components (e.g., G proteins) responsible for the activation of adenylate cyclase in BAT membranes of obese rats are more responsive to stimulation than those of lean animals. Such sensitivity may be related to and perhaps compensate for the reduced thermogenic activity in the obese Zucker rat during the development of obesity.  相似文献   

8.
9.
10.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   

11.
Measurements of the tissue accumulation of α-amino[1-14C]isobutyrate [1-14C]AIB) in lean (+/?) and obese (fa/fa) Zucker rats showed an augmented tissue/plasma ratio in the liver of the obese animals. In contrast, brown adipose tissue AIB accumulation was lower in the fa/fa animals. In response to a 24h starvation period AIB accumulation was significantly elevated in the liver and plasma of the lean animals and was unchanged in the liver of the fa/fa animals. The circulating concentration of alanine and branched-chain amino acids was elevated in the fa/fa animals as compared to their lean counterparts. These observations suggest that amino acid uptake is not involved in the impaired muscle development observed in the obese Zucker rat and that the ability of brown adipose tissue for amino acid utilization is decreased in the obese animals suggesting that this may partially explain the impaired thermoregulatory capacity observed in brown adipose tissue of obese Zucker rats.  相似文献   

12.
Fecal excretion of neutral sterols and bile acids was measured in age-matched hyperlipoproteinemic Zucker obese rats and their lean litter mates. The bile acid excretion (mg/day ± SEM) in Zucker rats was significantly higher (p<0.01) when compared to lean controls (Zucker obese rats 41.68 ± 2.86; lean controls 29.85 ± 1.50). Neutral sterol excretion in both the groups of rats was similar. Total fecal steroid excretion (mg/day ± SEM) in Zucker rats was significantly higher (p<0.01) than in lean controls (Zucker obese rats 52.33 ± 3.50; lean controls 39.23 ± 2.16. The Zucker rat thus mimics the increased bile acid excretion noted previously in human Type IV hyperlipoproteinemia and could serve as an ideal animal model for studying the interrelationship between bile acid excretion and very low density lipoprotein metabolism.  相似文献   

13.
Skeletal muscle is insulin resistant in the obese Zucker rat. Endurance training reduces muscle insulin resistance, but the effects of a single acute exercise session on muscle insulin resistance in the obese Zucker rat are unknown. Therefore, insulin responsiveness of muscle glucose uptake was measured in 15-week-old obese rats either 1, 48, or 72 hours after two hours of intermittent exercise (3030 min; work:rest). Hindlimbs of sedentary lean (LS) and obese (OS) rats and exercised obese (OE) rats were perfused after a 10-hour fast under both basal (0 mU.ml?1) and maximal (20 mU.ml?1) insulin concentrations to measure net glucose uptake. Insulin responsiveness of net glucose uptake was significantly reduced in OS compared to LS (8.5 ± 1.6 vs 15.3 ± 2.0 μmol.g?1.h?1, respectively). Compared to OS, insulin responsiveness of net glucose uptake was significantly increased by 56% and 80% at 1 hour and 48 hours after acute exercise. However, 72 hours after acute exercise, the increased insulin responsiveness of net glucose uptake was no longer evident. These results indicate that improved responsiveness of muscle glucose uptake persists for at least 48 hours after two hours of acute intermittent exercise in 15-week-old obese Zucker rats. (OBESITY RESEARCH 1993; 1:295–302)  相似文献   

14.
Fatty acid utilization by muscle and nonmuscle heart cells in culture has been investigated in the 7-day-old Zucker rat to determine if this tissue could contribute to the lower energy expenditure reported in obese rats at the onset of obesity. The partitioning of oleate to oxidation and esterification products and the effect of genotype on this partitioning according to cell types were studied. Results showed that the fatty acid beta-oxidation and its esterification in neutral lipid was decreased by 30% in beating muscle cells from obese animals when compared with those from lean animals. In contrast, nonmuscle cells exhibited a decreased beta-oxidation alone. A similar fatty acid composition of the phospholipids was found in non-muscle cells of obese animals and their lean litter mates. In muscle cultures, palmitic and oleic acids are lower in cells of obese rats than in those of lean rats. The present study indicates that a defect in energy metabolism could be found in heart cells at the onset of obesity, suggesting that this defect is determined by intrinisic factor(s).  相似文献   

15.
The existence of a restriction fragment length polymorphism (RFLP) closely linked to the fatty locus between the Zucker (Z) and Brown Norway (BN) rat strains allows evaluation of early effects of the fatty (fa) gene using offspring of back-crosses (N2) between F1 females and Zucker obese males. We examined several metabolic characteristics of N2 animals to determine if these hybrid animals exhibited similar characteristics of the obese syndrome to those of Zucker rats. Females from crosses of obese male Zucker (fd/fa) and lean female BN (+/+) rats were back-crossed to their sires, resulting in twelve N2 litters. At 9 weeks of age, liver, spleen, interscapular brown fat (IBAT), and gonadal, retroperitoneal (RP), and inguinal fat depots were removed and weighed. Samples of the RP depot were analyzed for cell size and number. Obese N2 rats were hyperphagic, with body weights in the range of those of obese Zucker rats. Obese N2 rats were also hyperinsulinemic [mean f SEM, pU/ml: females, 7.9 ± 0.6 vs. 82.1 f 8.4 (lean vs. obese); males, 10.5 ± 1.6 vs. 128.5 ± 13.4 (lean vs. obese)] and mildly hyperglycemic [mean ± SEM, mg/dl: females, 104.1 ± 2.0 vs. 139.0 ± 14.7 (lean vs. obese); males, 100.9 ± 2.6 vs. 132.0 ± 2.8 (lean vs. obese) p ≤ 0.05]. White fat depots in obese tats were 3 to 7 times heavier than those in lean rats; adipocyte numbers in RP depots were 50% greater in obese than in lean rats; and cell size was more than 3 times larger. IBAT, liver, and spleen were also heavier in obese vs. lean rats, while tail lengths were shorter. Percent lean carcass mass and % carcass protein were about 30% greater in lean vs. obese rats, while % carcass fat in obese rats was 5 times greater than that of lean rats. Thus, phenotypic expression of the fa gene in ZBN hybrid animals, with approximately 25% of their genetic background coming from the BN strain, appears to be similar to that in Zucker rats. Given the similarity of phenotypic expression of the fa gene between the Zucker strain and ZBN hybrids, it is plausible to consider using ZBN hybrids for studies of early manifestations of fa gene action prior to onset of detectable obesity .  相似文献   

16.
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.  相似文献   

17.
Thirteen-week-old female Zucker lean (Fa/Fa) and obese (fa/fa) rats were injected through a cannula inserted in the left jugular vein with 1 mL/kg of 3H-labeled oleoyl-estrone in liposomes (Merlin-2) (i.e., 670 fmol, 84 kBq). The rats were killed 10 minutes later and dissected. The presence of intact or hydrolyzed oleoyl-estrone was later determined in all samples. The pattern of distribution of estrone was quite different from that of oleoyl-estrone both in rats that were lean and in those that were obese. Estrone was better retained by white adipose tissue than oleoyl-estrone. Liver, spleen, and lungs accumulated more oleoyl-estrone and split part of it, from 4.7% (lung, obese) to 27% (liver, lean). The overall high retention of estrone by the rat tissues results in its very low circulating levels. The fast splitting of liposome-carried oleoyl-estrone by most tissues (up to more than 67% by intestine and skin of lean rats) may help explain the rise in blood free estrone. The differences between lean and obese Zucker rats are mainly quantitative in the case of estrone, the main differences being found in blood and adipose tissues. However, when we compare the data for oleoyl-estrone, the differences cannot be dismissed simply as due to differences in body size or the extent of fat deposits. A large portion of the label remained in the blood of the rats that were obese but not in those that were lean, the tissues of which took up more label. Brown adipose tissue shows a fair affinity for oleoyl-estrone in the rats that were lean but practically does not retain label in the rats that were obese, suggesting that oleoyl-estrone may have a direct effect on brown adipose tissue. The decreased uptake of oleoyl-estrone in rats that were obese shows that the mechanism regulating the turnover or disposal of this signal is altered in this type of genetic obesity.  相似文献   

18.
Adipocytes and perivascular adipose tissue are emerging as regulators of vascular function. The effects of adipocytes and perivascular adipose tissue on human smooth muscle cell (SMC) proliferation were investigated. Conditioned medium was prepared from cultured premature and differentiated 3T3-L1 adipocytes and from periaortic adipose tissue from young (3 mo) and old (24 mo) Wistar-Kyoto (WKY) rats, lean and obese Zucker rats (3 mo), and WKY rats fed normal chow or a high-fat diet for 3 mo. Conditioned medium from differentiated (but not premature) adipocytes stimulated SMC proliferation, which was abolished by charcoal and proteinase K treatment but was resistant to heat, trypsin, or phospholipase B (to hydrolyze lysophosphatidic acid). Further experiments demonstrated that the growth factor(s) are hydrosoluble and present in the fraction of molecular mass >100 kDa. Moreover, conditioned medium from periaortic adipose tissue stimulated SMC proliferation, which was significantly enhanced in aged rats and in rats fed a high-fat diet but not in obese Zucker rats deficient in functional leptin receptors. In conclusion, mature adipocytes release hydrosoluble protein growth factor(s) with a molecular mass >100 kDa for SMCs. Perivascular adipose tissue stimulates SMC proliferation, which is enhanced in aged WKY and in high-fat, diet-induced obesity but not in leptin receptor-deficient obese Zucker rats. These adipocyte-derived growth factor(s) and the effect of perivascular adipose tissue may be involved in vascular disease associated with aging and obesity.  相似文献   

19.
Serine/threonine phosphorylation of insulin receptor has been implicated in the development of insulin resistance. To investigate whether dephosphorylation of serine/threonine residues of the insulin receptor may restore the decreased insulin-stimulated receptor tyrosine kinase activity in skeletal muscle of obese Zucker rats, insulin receptor tyrosine kinase activity was measured before and after alkaline phosphatase treatment. Compared to lean controls, insulin-stimulated glucose transport was depressed by 61% (p < 0.05) in obese Zucker rats. The insulin receptor and insulin receptor substrate-1 contents were decreased by 14% (p < 0.05) and 16% (p < 0.05), respectively, in skeletal muscle of obese Zucker rats. In vivo insulin-induced tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1 was depressed by 82% (p < 0.05) and 86% (p < 0.05), respectively. In the meantime, in vitro insulin-stimulated receptor tyrosine kinase activity in obese rats was decreased by 39% (p < 0.05). Dephosphorylation of the insulin receptor by prior alkaline phosphatase treatment increased insulin-stimulated receptor tyrosine kinase activity in both lean and obese Zucker rats, but the increase was three times greater in obese Zucker rats (p < 0.05). These findings suggest that excessive serine/threonine phosphorylation of the insulin receptor in obese Zucker rats may be a cause for insulin resistance in skeletal muscle.  相似文献   

20.
In vivo single-voxel magnetic resonance spectroscopy (MRS) at 4.7T and ex vivo high-resolution proton magnetic resonance spectroscopy (HR-NMR) at 500 MHz were used to study the composition of adipose tissues in Zucker obese and Zucker lean rats. Lipid composition was characterized by unsaturation and polyunsaturation indexes and mean chain lengths. In vitro experiments were conducted in known mixtures of triglycerides and oils in order to validate the method. To avoid inaccuracies due to partial peak overlapping in MRS, peak quantification was performed after fitting of spectral peaks by using the QUEST algorithm. The intensity of different spectral lines was also corrected for T2 relaxation. Albeit with different sensitivity and accuracy, both techniques revealed that white adipose tissue is characterized by lower unsaturation and polyunsaturation indexes in obese rats compared with controls. HR-NMR revealed similar differences in brown adipose tissue. The present findings confirm the hypothesis that obese and lean Zucker rats have different adipose tissue composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号