首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Biopsy samples from the vastus lateralis muscle (VLM) of man were examined for fiber composition at rest and at selected intervals during prolonged exercise ranging in intensity from 40% to 75% of the total body maximal oxygen uptake (VO 2max) and one-min bouts of exercise at 150%VO 2max. Because of the heterogeneity of fibers in human VLM, studies were also completed where the effect of exercise on the fiber composition of the rat soleus muscle (SM) was examined. In some animals the SM from one hindlimb was removed 9 days prior to their being exercised after which the remaining SM was removed. Exercise reduced muscle glycogen in all experiments. In the studies with man, blood lactate exceeded 17 mmoles/l after the heavy exercise but was largely unchanged by endurance exercise. Colonic temperature of the exercised rats exceeded 40° C. In studies where fibers were identified only as type I and type II, type II fibers in the VLM of all samples (16) taken at rest averaged 61.2±12.5% as compared to 59.0±12.0% after exercise (54 biopsy samples). In a second series of studies with man where the subtypes of type II fibers were identified, there were also no differences in fiber composition of the VLM after varying periods of exercise. Glycogen content and percent fiber composition were the same in right and left SM obtained from rested rats. Exercise (30 to 40 min) did not alter the fiber composition of the rat SM. These data demonstrate that the histochemically demonstratable myofibrillar actomyosin ATPase of skeletal muscle is not altered by a single exercise bout.  相似文献   

2.
Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor machine separated by 3 min. Myogenin, MRF4, MyoD, IGF-IEabc (isoforms a, b, and c) and IGF-IEbc (isoform b and c) mRNA levels were determined in the vastus lateralis muscle by RT-PCR before exercise, immediately after, and 1, 2, 6, 24, and 48 h postexercise. Myogenin, MyoD, and MRF4 mRNA levels were elevated (P < 0.005) by 100-400% 0-24 h postexercise. IGF-IEabc mRNA content decreased (P < 0.005) by approximately 44% after 1 and 6 h of recovery. The IGF-IEbc mRNA level was unaffected. The present study shows that myogenin, MyoD, and MRF4 mRNA levels are transiently elevated in human skeletal muscle after a single bout of heavy-resistance training, supporting the idea that the MRFs may be involved in regulating hypertrophy and/or fiber-type transitions. The results also suggest that IGF-IEa expression may be downregulated at the mRNA level during the initial part of recovery from resistance exercise.  相似文献   

3.
4.
The purpose of this study was to investigate mRNA expression of several key skeletal muscle myogenic controllers; myogenic differentiation factor (MyoD), muscle regulatory factor 4 (MRF4), myogenic factor 5 (Myf5), myogenin, myostatin, and myocyte enhancer factor 2 (MEF2) at rest and 4 h after a single bout of resistance exercise (RE) in young and old women. Eight young women (YW; 23 +/- 2 yr, 67 +/- 5 kg) and six old women (OW; 85 +/- 1 yr, 67 +/- 4 kg) performed 3 sets of 10 repetitions of bilateral knee extensions at 70% of one repetition maximum. Muscle biopsies were taken from the vastus lateralis before and 4 h after RE. Using real-time RT PCR, mRNA from the muscle samples was amplified and normalized to GAPDH. At rest, OW expressed higher (P < 0.05) levels of MyoD, MRF4, Myf5, myogenin, and myostatin compared with YW. In response to RE, there was a main time effect (P < 0.05) for the YW and OW combined in the upregulation of MyoD (2.0-fold) and MRF4 (1.4-fold) and in the downregulation of myostatin (2.2-fold). There was a trend (P = 0.08) for time x age interaction in MRF4. These data show that old women express higher myogenic mRNA levels at rest. The higher resting myogenic mRNA levels in old women may reflect an attempt to preserve muscle mass and function. When challenged with RE, old women appear to respond in a similar manner as young women.  相似文献   

5.
The 5'AMP-activated protein kinase (AMPK) is stimulated by contractile activity in rat skeletal muscle. AMPK has emerged as an important signaling intermediary in the regulation of cell metabolism being linked to exercise-induced changes in muscle glucose and fatty acid metabolism. In the present study, we determined the effects of exercise on isoform-specific AMPK activity (alpha1 and alpha2) in human skeletal muscle. Needle biopsies of vastus lateralis muscle were obtained from seven healthy subjects at rest, after 20 and 60 min of cycle ergometer exercise at 70% of VO(2)max, and 30 min following the 60 min exercise bout. In comparison to the resting state, AMPK alpha2 activity significantly increased at 20 and 60 min of exercise, and remained at a higher level with 30 min of recovery. AMPK alpha1 activity tended to slightly decrease with 20 min of exercise at 70%VO(2)max; however, the change was not statistically significant. AMPK alpha1 activities were at basal levels at 60 min of exercise and 30 min of recovery. On a separate day, the same subjects exercised for 20 min at 50% of VO(2)max. Exercise at this intensity did not change alpha2 activity, and similar to exercise at 70% of VO(2)max, there was no significant change in alpha1 activity. In conclusion, exercise at a higher intensity for only 20 min leads to increases in AMPK alpha2 activity but not alpha1 activity. These results suggest that the alpha2-containing AMPK complex, rather than alpha1, may be involved in the metabolic responses to exercise in human skeletal muscle.  相似文献   

6.
Muscles ofspinal cord-transected rats exhibit severe atrophy and a shift toward afaster phenotype. Exercise can partially prevent these changes. Thegoal of this study was to investigate early events involved inregulating the muscle response to spinal transection and passivehindlimb exercise. Adult female Sprague-Dawley rats were anesthetized,and a complete spinal cord transection lesion(T10) was created in all ratsexcept controls. Rats were killed 5 or 10 days after transection orthey were exercised daily on motor-driven bicycles starting at 5 daysafter transection and were killed 0.5, 1, or 5 days after the firstbout of exercise. Structural and biochemical features of soleus andextensor digitorum longus (EDL) muscles were studied. Atrophy wasdecreased in all fiber types of soleus and in type 2a and type 2xfibers of EDL after 5 days of exercise. However, exercise did notappear to affect fiber type that was altered within 5 days of spinalcord transection: fibers expressing myosin heavy chain 2xincreased in soleus and EDL, and extensive coexpression of myosin heavy chain in soleus was apparent. Activation of satellite cells was observed in both muscles of transected rats regardless of exercise status, evidenced by increased accumulation of MyoD and myogenin. Increased expression was transient, except for MyoD, which remained elevated in soleus. MyoD and myogenin were detected both in myofiber and in satellite cell nuclei in both muscles, but in soleus, MyoD waspreferentially expressed in satellite cell nuclei, and in EDL, MyoD wasmore readily detectable in myofiber nuclei, suggesting that MyoD andmyogenin have different functions in different muscles. Exercise didnot affect the level or localization of MyoD and myogenin expression.Similarly, Id-1 expression was transiently increased in soleus and EDLupon spinal cord transection, and no effect of exercise was observed.These results indicate that passive exercise can ameliorate muscleatrophy after spinal cord transection and that satellite cellactivation may play a role in muscle plasticity in response to spinalcord transection and exercise. Finally, the mechanisms underlyingmaintenance of muscle mass are likely distinct from those controllingmyosin heavy chain expression.

  相似文献   

7.
The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Conclusion: Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.  相似文献   

8.
9.
The aims of this study were 1) to characterize changes in matrix metalloproteinase (MMP), endostatin, and vascular endothelial growth factor (VEGF)-A expression in skeletal muscle in response to a single bout of exercise in humans; and 2) to determine if any exchange of endostatin and VEGF-A between circulation and the exercising leg is associated with a change in the tissue expression or plasma concentration of these factors. Ten healthy males performed 65 min of cycle exercise, and muscle biopsies were obtained from the vastus lateralis muscle at rest and immediately and 120 min after exercise. In the muscle biopsies, measurements of mRNA expression levels of MMP-2, MMP-9, MMP-14, and tissue inhibitor of metalloproteinase; VEGF and endostatin protein levels; and MMP activities were performed. Femoral arterial and venous concentrations of VEGF-A and endostatin were determined before, during, and 120 min after exercise. A single bout of exercise increased MMP-9 mRNA and activated MMP-9 protein in skeletal muscle. No measurable increase of endostatin was observed in the skeletal muscle or in plasma following exercise. A concurrent increase in skeletal muscle VEGF-A mRNA and protein levels was induced by exercise, with no signs of peripheral uptake from the circulation. However, a decrease in plasma VEGF-A concentration occurred following exercise. Thus 1) a single bout of exercise activated the MMP system without any resulting change in tissue endostatin protein levels, and 2) the increased VEGF-A protein levels are due to changes in the skeletal muscle tissue itself. Other mechanisms are responsible for the observed exercise-induced decrease in VEGF-A in plasma.  相似文献   

10.
Influence of exercise on the fiber composition of skeletal muscle   总被引:1,自引:0,他引:1  
Biopsy samples from the vastus lateralis muscle (VLM) of man were examined for fiber composition at rest and at selected intervals during prolonged exercise ranging in intensity from 40% to 75% of the total body maximal oxygen uptake (VO2max) and one-min bouts of exercise at 150% VO2max. Because of the heterogeneity of fibers in human VLM, studies were also completed where the effect of exercise on the fiber composition of the rat soleus muscle (SM) was examined. In some animals the SM from one hindlimb was removed 9 days prior to their being exercised after which the remaining SM was removed. Exercise reduced muscle glycogen in all experiments. In the studies with man, blood lactate exceeded 17 mmoles/l after the heavy exercise but was largely unchanged by endurance exercise. Colonic temperature of the exercised rats exceeded 40 degrees C. In studies where fibers were identified only as type I and type II, type II fibers in the VLM of all samples (16) taken at rest averaged 61.2 +/- 12.5% as compared to 59.0 +/- 12.0% after exercise (54 biopsy samples). In a second series of studies with man where the subtypes of type II fibers were identified, there were also no differences in fiber composition of the VLM after varying periods of exercise. Glycogen content and percent fiber composition were the same in right and left SM obtained from rested rats. Exercise (30 to 40 min) did not alter the fiber composition of the rat SM. These data demonstrate that the histochemically demonstratable myofibrillar actomyosin ATPase of skeletal muscle is not altered by a single exercise bout.  相似文献   

11.
The aims of this study were (1) to determine the relationship between muscle fibre cross-sectional area and cytoplasmic density of myonuclei in high- and low-oxidative Xenopus muscle fibres and (2) to test whether insulin and long-term high fibre length caused an increase in the number of myonuclei and in the expression of α-skeletal actin and of myogenic regulatory factors (myogenin and MyoD) in these muscle fibres. In high- and low-oxidative muscle fibres from freshly frozen iliofibularis muscles, the number of myonuclei per millimetre fibre length was proportional to muscle fibre cross-sectional area. The in vivo myonuclear density thus seemed to be strictly regulated, suggesting that the induction of hypertrophy required the activation of satellite cells. The effects of muscle fibre length and insulin on myonuclear density and myonuclear mRNA content were investigated on high-oxidative single muscle fibres cultured for 4–5 days. Muscle fibres were kept at a low length (~15% below passive slack length) in culture medium with a high insulin concentration (~6 nmol/l: “high insulin medium”) or without insulin, and at a high length (~5% above passive slack length) in high insulin medium. High fibre length and high insulin medium did not change the myonuclear density of isolated muscle fibres during culture. High insulin increased the myonuclear α-skeletal actin mRNA content, whereas fibre length had no effect on α-skeletal actin mRNA content. After culture at high fibre length in high insulin medium, the myonuclear myogenin mRNA content was 2.5-fold higher than that of fibres cultured at low length in high insulin medium or in medium without insulin. Myonuclear MyoD mRNA content was not affected by fibre length or insulin. These in vitro experiments indicate that high muscle fibre length and insulin enhance muscle gene expression but that other critical factors are required to induce adaptation of muscle fibre size and performance.This work was partially supported by a research grant from the Haak Bastiaanse Kuneman Stichting.  相似文献   

12.
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.  相似文献   

13.
We have examined the effects of insulin on p38 mitogen-activated protein kinase (MAPK) phosphorylation in human skeletal muscle and the effects of prior exercise hereon. Seven men performed 1-h one-legged knee extensor exercise 3 h before the initiation of a 100-min euglycemic-hyperinsulinemic (600 pmol/l) clamp. Glucose uptake across the legs was measured with the leg balance technique, and muscle biopsies were obtained from the rested and exercised vastus lateralis before and during insulin infusion. Net glucose uptake during the clamp was approximately 50% higher (P < 0.05) in the exercised leg than in the rested leg. Insulin induced a modest sustained 1.2- and 1.3-fold increase (P < 0.05) in p38 MAPK phosphorylation in the rested and exercised legs, respectively. However, p38 phosphorylation was approximately 50% higher (P < 0.05) in the exercised compared with the rested leg before and during insulin infusion. We conclude that a physiological concentration of insulin causes modest but sustained activation of the p38 MAPK pathway in human skeletal muscle. Furthermore, the stimulatory effect of exercise on p38 phosphorylation is persistent for at least 3 h after exercise and remains evident during subsequent insulin stimulation. Because p38 MAPK has been suggested to play a necessary role in activation of GLUT-4 at the cell surface, the present data may suggest a putative role of p38 MAPK in the increased insulin sensitivity of skeletal muscle after exercise.  相似文献   

14.
Although satellite cell differentiation is involved in postnatal myogenesis from growth to posttrauma regeneration, the early stages of this process remain unclear. This study investigatedpHuDes-nls-lacZtransgene activity, as revealed by X-gal staining and the accumulation of MyoD, myogenin, endogenous desmin, and myosin, in order to determine whether satellite cells share the same activation program during growth and regeneration. After birth, skeletal myonuclei in which myogenin expression was limited were briefly characterized by transgene activity. Satellite cells were only evidenced by MyoD and slow myosin accumulation, but failed to initiate transgene expression. After freeze trauma, satellite cell activation led to MyoD, myogenin, and desmin expression. Subsequently, when myosin expression occurred, transgene activation was apparent in regenerating structures, with more intense X-gal staining in mononucleated cells than regenerating myotubes. After the second week posttrauma, only desmin and myogenin expression were maintained in regenerating structures. In culture, the behavior of satellite cells showed that desmin expression was committed before transgene activation occurred, i.e., concurrently with MyoD, myogenin, myosin expression, and the first fusion events. Quantitative analysis confirmed the discrepancy between endogenous desmin and transgene expression and demonstrated the close correlation between transgene activation and the fusion index. Our results strongly suggest that satellite cells promote distinct pathways of myogenic response during growth and regeneration.  相似文献   

15.
This study examined the time course of glycogen accumulation in skeletal muscle depleted by concentric work and subsequently subjected to eccentric exercise. Eight men exercised to exhaustion on a cycle ergometer [70% of maximal O2 consumption (VO2max)] and were placed on a carbohydrate-restricted diet. Approximately 12 h later they exercised one leg to subjective failure by repeated eccentric action of the knee extensors against a resistance equal to 120% of their one-repetition maximum concentric knee extension force (ECC leg). The contralateral leg was not exercised and served as a control (CON leg). During the 72-h recovery period, subjects consumed 7 g carbohydrate.kg body wt-1.day-1. Moderate soreness was experienced in the ECC leg 24-72 h after eccentric exercise. Muscle biopsies from the vastus lateralis of the ECC and CON legs revealed similar glycogen levels immediately after eccentric exercise (40.2 +/- 5.2 and 47.6 +/- 6.4 mmol/kg wet wt, respectively; P greater than 0.05). There was no difference in the glycogen content of ECC and CON legs after 6 h of recovery (77.7 +/- 7.9 and 85.1 +/- 4.9 mmol/kg wet wt, respectively; P greater than 0.05), but 18 h later, the ECC leg contained 15% less glycogen than the CON leg (90.2 +/- 8.2 vs. 105.8 +/- 8.9 mmol/kg wet wt; P less than 0.05). After 72 h of recovery, this difference had increased to 24% (115.8 +/- 8.0 vs. 153.0 +/- 12.2 mmol/kg wet wt; P less than 0.05). These data confirm that glycogen accumulation is impaired in eccentrically exercised muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Resistance training changes the balance of muscle protein turnover, leading to gains in muscle mass. A longitudinal design was employed to assess the effect that resistance training had on muscle protein turnover in the fed state. A secondary goal was investigation of the potential interactive effects of creatine (Cr) monohydrate supplementation on resistance-training-induced adaptations. Young (N = 19, 23.7 +/- 3.2 year), untrained (UT), healthy male subjects completed an 8-week resistance-training program (6 d/week). Supplementation with Cr had no impact on any of the variables studied; hence, all subsequent data were pooled. In the UT and trained (T) state, subjects performed an acute bout of resistance exercise with a single leg (exercised, EX), while their contralateral leg acted as a nonexercised (NE) control. Following exercise, subjects were fed while receiving a primed constant infusion of [d5]- and [15N]-phenylalanine to determine the fractional synthetic and breakdown rates (FSR and FBR), respectively, of skeletal muscle proteins. Acute exercise increased FSR (UT-NE, 0.065 +/- 0.025 %/h; UT-EX, 0.088 +/- 0.032 %/h; P < 0.01) and FBR (UT-NE, 0.047 +/- 0.023 %/h; UT-EX, 0.058 +/- 0.026 %/h; P < 0.05). Net balance (BAL = FSR - FBR) was positive in both legs (P < 0.05) but was significantly greater (+65%) in the EX versus the NE leg (P < 0.05). Muscle protein FSR and FBR were greater at rest following T (FSR for T-NE vs. UT-NE, +46%, P < 0.01; FBR for T-NE vs. UT-NE, +81%, P < 0.05). Resistance training attenuated the acute exercise-induced rise in FSR (T-NE vs. T-EX, +20%, P = 0.65). The present results demonstrate that resistance training resulted in an elevated resting muscle protein turnover but an attenuation of the acute response of muscle protein turnover to a single bout of resistance exercise.  相似文献   

17.
18.
19.
myogenin (-/-) mice display severe skeletal muscle defects despite expressing normal levels of MyoD. The failure of MyoD to compensate for myogenin could be explained by distinctions in protein function or by differences in patterns of gene expression. To distinguish between these two possibilities, we compared the abilities of constitutively expressed myogenin and MyoD to support muscle differentiation in embryoid bodies made from myogenin (-/-) ES cells. Differentiated embryoid bodies from wild-type embryonic stem (ES) cells made extensive skeletal muscle, but embryoid bodies from myogenin (-/-) ES cells had greatly attenuated muscle-forming capacity. The inability of myogenin (-/-) ES cells to generate muscle was independent of endogenous MyoD expression. Skeletal muscle was restored in myogenin (-/-) ES cells by constitutive expression of myogenin. In contrast, constitutive expression of MyoD resulted in only marginal enhancement of skeletal muscle, although myocyte numbers greatly increased. The results indicated that constitutive expression of MyoD led to enhanced myogenic commitment of myogenin (-/-) cells but also indicated that committed cells were impaired in their ability to form muscle sheets without myogenin. Thus, despite their relatedness, myogenin's role in muscle formation is distinct from that of MyoD, and the distinction cannot be explained merely by differences in their expression properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号