首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
胞外囊泡(extracellular vesicles,EVs)是一类由细胞分泌到胞外的能够被受体细胞摄取的膜性囊泡小体,直径在20~ 1 000 nm.近年来,越来越多的研究者发现胞外囊泡在疾病诊断、预后评估以及药物递送等方面具有重要的生物学作用.胞外囊泡可以直接参与细胞间信息的传递以及物质的运输,其携带的核酸(mRNA,microRNA和lncRNA)和蛋白质可以影响受体细胞的生理状态.大量研究表明,胞外囊泡是被糖基化修饰的,胞外囊泡表面覆盖了大量的聚糖以及糖结合蛋白,而已知聚糖类物质在调控细胞黏附、细胞-细胞之间的信息传递、细胞和细胞外基质相互作用、免疫调节和肿瘤转移等方面发挥重要的作用.本文综述了近年来细胞外囊泡表面糖缀合物修饰的前沿研究,以期更好地理解聚糖在胞外囊泡的合成、释放以及运输过程及其生物学功能中的作用.  相似文献   

2.
    
Extracellular vesicles (EVs) are a novel format of advanced therapeutical medicinal products (ATMPs). They can act regenerative or immune-modulatory as cell therapy substitutes or as a platform for designer exosomes. The biotechnological production of therapeutic EVs is still very much uncharted territory so standardized host cells, production setups, and isolation methods are not yet implemented. In this work, we present a tangential flow filtration (TFF) and fast-performance liquid chromatography (FPLC)-based size exclusion chromatography (SEC) purification setup that is compatible for industry applications. Moreover, we evaluated a series of potential host cell lines regarding their EV productivity, characteristics, and biological functionality. It was found that telomerase-immortalized Wharton's jelly mesenchymal stromal cells (WJ-MSC/TERT273) secrete high amounts of EVs per cell with regenerative capabilities. On the other hand, Cevec's amniocyte producer cells® (CAP®) and human embryonic kidney (HEK293) suspension cells are suitable platforms for designer EVs with high yields. Finally, we aimed to boost the EV secretion of HEK293 cells via chemical adjuvants and verified four compounds that heighten cellular EV secretion in a presumably cAMP-dependent manner. A combination of fenoterol, iodoacetamide, and dinitrophenol increased the EV yield in HEK293 cells threefold and cellular secretion rate fivefold.  相似文献   

3.
4.
    
Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV‐1‐infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re‐routed to non‐viral EVs in a Nef‐dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.  相似文献   

5.
    
Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non-cardiomyocyte-related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical-grade stocks of cells for their ischaemia/reperfusion studies.  相似文献   

6.
膝骨关节炎(knee osteoarthritis,KOA)是以关节软骨退变为主要病变的退行性疾病。目前,KOA尚无有效治疗药物。细胞外囊泡(extracellular vesicles,EVs)是由细胞释放的脂质双分子层包绕形成的球状膜性囊泡,可在细胞间传递核酸、蛋白质等生物活性分子。与动物来源EVs相比,植物来源EVs因其来源广泛且经济,在药物载体递送研究领域引起广泛关注。通过基因工程等方法改造EVs进行药物递送,可极大提高药物递送效率及其疗效。本文综述了动、植物两种来源的EVs在KOA中的治疗进展,特别聚焦于工程化EVs作为药物递送载体在KOA治疗中的研发现状,旨在为利用EVs治疗KOA提供参考。  相似文献   

7.
    
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.  相似文献   

8.
    
Extracellular vesicles (EVs) have emerged as novel diagnostic and therapeutic approaches for cardiovascular diseases. EVs derived from various origins exhibit distinct effects on the cardiovascular system. However, the application of native EVs is constrained due to their poor stabilities and limited targeting capabilities. Currently, targeted modification of EVs primarily involves genetic engineering, chemical modification (covalent, non-covalent), cell membrane modification, and biomaterial encapsulation. These techniques enhance the stability, biological activity, target-binding capacity, and controlled release of EVs at specific cells and tissues. The diverse origins of cardioprotective EVs are covered, and the applications of cardiac-targeting EV delivery systems in protecting against cardiovascular diseases are discussed. This review summarizes the current stage of research on the potential of EV-based targeted therapies for addressing cardiovascular disorders.  相似文献   

9.
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) may deliver therapeutic effects that are comparable to their parental cells. MSC-EVs are promising agents for the treatment of a variety of diseases. To reach the intermediate goal of clinically testing safety and efficacy of EVs, strategies should strive for efficient translation of current EV research. On the basis of our in vitro an in vivo findings regarding the biological actions of EVs and our experience in manufacturing biological stem cell therapeutics for routine use and clinical testing, we discuss strategies of manufacturing and quality control of umbilical cord–derived MSC-EVs. We introduce guidelines of good manufacturing practice and their practicability along the path from the laboratory to the patient. We present aspects of manufacturing and final product quality testing and highlight the principle of “The process is the product.” The approach presented in this perspective article may facilitate translational research during the development of complex biological EV-based therapeutics in a very early stage of manufacturing as well as during early clinical safety and proof-of-concept testing.  相似文献   

10.
    
Extracellular vesicles (EVs) are a heterogeneous population of vesicles composed of a lipid bilayer that carry a large repertoire of molecules including proteins, lipids, and nucleic acids. In this review, some guidelines for plasma‐derived EVs isolation, characterization, and proteomic analysis, and the application of the above to cardiovascular disease (CVD) studies are provided. For EVs analysis, blood samples should be collected using a 21‐gauge needle, preferably in citrate tubes, and plasma stored for up to 1 year at ?80°, using a single freeze–thaw cycle. For proteomic applications, differential centrifugation (including ultracentrifugation steps) is a good option for EVs isolation. EVs characterization is done by transmission electron microscopy, particle enumeration techniques (nanoparticle‐tracking analysis, dynamic light scattering), and flow cytometry. Regarding the proteomics strategy, a label‐free and gel‐free quantitative method is a good choice due to its accuracy and because it minimizes the amount of sample required for clinical applications. Besides the above, main EVs proteomic findings in cardiovascular‐related diseases are presented and analyzed in this review, paying especial attention to overlapping results between studies. The latter might offer new insights into the clinical relevance and potential of novel EVs biomarkers identified to date in the context of CVD.  相似文献   

11.
Exosomes, nano‐sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC‐peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T‐cell activation in vitro. When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN‐γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN‐γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.  相似文献   

12.
    
Extracellular vesicles (EV) function as messengers between endothelial cells (EC) and vascular smooth muscle cells (VSMC). Since chronic kidney disease (CKD) increases the risk for vascular calcifications, we investigated whether EV derived from uraemic milieu-stimulated EC and derived from uraemic rats impact the osteogenic transdifferentiation/calcification of VSMC. For that purpose, human EC were treated with urea and indoxyl sulphate or left untreated. Experimental uraemia in rats was induced by adenine feeding. ‘Uraemic’ and control EV (EVUR; EVCTRL) were isolated from supernatants and plasma by using an exosome isolation reagent. Rat VSMC were treated with a pro-calcifying medium (CM) with or without EV supplementation. Gene expressions, miRNA contents and protein expressions were determined by qPCR and Western blots, respectively. Calcifications were determined by colorimetric assays. Delivery of miRNA inhibitors/mimics to EV and siRNA to VSMC was achieved via transfection. EVCTRL and EVUR differed in size and miRNA contents. Contrary to EVCTRL, EC- and plasma-derived EVUR significantly increased the pro-calcifying effects of CM, including altered gene expressions of osterix, runx2, osteocalcin and SM22α. Further, EVUR enhanced the protein expression of the phosphate transporter PiT-1 in VSMC and induced a phosphorylation of AKT and ERK. Knock down of PiT-1 and individual inhibition of AKT and ERK signalling in VSMC blocked the pro-calcifying effects of EVUR. Similar effects were achieved by inhibition of miR-221/-222 and mimicking of miR-143/-145 in EVUR. In conclusion, EVUR might represent an additional puzzle piece of the complex pathophysiology of vascular calcifications in CKD.  相似文献   

13.
    
Comprehensive reviews and large population-based cohort studies have played an important role in the diagnosis and treatment of pancreatitis and its sequelae. The incidence and mortality of pancreatitis have been reduced significantly due to substantial advancements in the pathophysiological mechanisms and clinically effective treatments. The study of extracellular vesicles (EVs) has the potential to identify cell-to-cell communication in diseases such as pancreatitis. Exosomes are a subset of EVs with an average diameter of 50~150 nm. Their diverse and unique constituents include nucleic acids, proteins, and lipids, which can be transferred to trigger phenotypic changes of recipient cells. In recent years, many reports have indicated the role of EVs in pancreatitis, including acute pancreatitis, chronic pancreatitis and autoimmune pancreatitis, suggesting their potential influence on the development and progression of pancreatitis. Plasma exosomes of acute pancreatitis can effectively reach the alveolar cavity and activate alveolar macrophages to cause acute lung injury. Furthermore, upregulated exosomal miRNAs can be used as biomarkers for acute pancreatitis. Here, we summarized the current understanding of EVs in pancreatitis with an emphasis on their biological roles and their potential use as diagnostic biomarkers and therapeutic agents for this disease.  相似文献   

14.
    
Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence‐Associated β‐Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9‐ and CD81‐positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.  相似文献   

15.
An effective immune response requires the engagement of host receptors by pathogen‐derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen‐ as well as host‐derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity.  相似文献   

16.
    
Cardiac progenitor cells are considered to be one of the most promising stem cells for heart regeneration and repair. The cardiac protective effect of CPCs is mainly achieved by reducing tissue damage and/or promoting tissue repair through a paracrine mechanism. Exosome is a factor that plays a major role in the paracrine effect of CPCs. By delivering microRNAs to target cells and regulating their functions, exosomes have shown significant beneficial effects in slowing down cardiac injury and promoting cardiac repair. Among them, miRNA‐210 is an important anoxic‐related miRNA derived from CPCs exosomes, which has great cardiac protective effect of inhibiting myocardial cell apoptosis, promoting angiogenesis and improving cardiac function. In addition, circulating miR‐210 may be a useful biomarker for the prediction or diagnosis of related cardiovascular diseases. In this review, we briefly reviewed the mechanism of miR‐210 derived from CPCs exosomes in cardiac protection in recent years.  相似文献   

17.
    
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell–cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.  相似文献   

18.
    
Issues associated with upscaling exosome production for therapeutic use may be overcome through utilizing artificial exosomes. Cell‐derived mimetic nanovesicles (M‐NVs) are a potentially promising alternative to exosomes for clinical applicability, demonstrating higher yield without incumbent production and isolation issues. Although several studies have shown that M‐NVs have similar morphology, size and therapeutic potential compared to exosomes, comprehensive characterization and to what extent M‐NVs components mimic exosomes remain elusive. M‐NVs were generated through the extrusion of cells and proteomic profiling demonstrated an enrichment of proteins associated with membrane and cytosolic components. The proteomic data herein reveal a subset of proteins that are highly abundant in M‐NVs in comparison to exosomes. M‐NVs contain proteins that largely represent the parental cell proteome, whereas the profile of exosomal proteins highlight their endosomally derived origin. This advantage of M‐NVs alleviates the necessity of endosomal sorting of endogenous therapeutic proteins or RNA into exosomes. This study also highlights differences in protein post‐translational modifications among M‐NVs, as distinct from exosomes. Overall this study provides key insights into defining the proteome composition of M‐NVs as a distinct from exosomes, and the potential advantage of M‐NVs as an alternative nanocarrier when spontaneous endosomal sorting of therapeutics are limited.  相似文献   

19.
    
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.  相似文献   

20.
    
Cell communication through extracellular vesicles (EVs) has been defined for many years and it is not limited only to neighboring cells, but also distant ones in organisms receive these signals. These vesicles are secreted from the variety of cells and are composed of a distinctive component such as proteins, lipids, and nucleic acids. EVs have different classified subgroups regarding their cell origin, in this context, exosomes are the most appealing particles in cell biology, especially clinical in recent years and are represented as novel therapeutic agents with numerous advantages alongside and/or over cell therapy. However, cell therapy had a hopeful outcome in gastrointestinal diseases which have minimal alternatives in their treatments. Inflammatory bowel disease (IBD), liver fibrosis, gastrointestinal cancers are the examples that cell therapy and immunotherapy were applied in their treatment, therefore, the cell products like exosomes are the beneficial option in their treatment even cancers with promising results in animal models. In this review, we consider the main defined biogenesis, function, and component of secreted exosomes in different cells with a specific focus on the potential application of these exosomes as a cell-free therapeutic approach in gastrointestinal diseases like IBD, gastric cancer, and colon cancer. Additionally, exosomes role as therapeutic reagents mainly mesenchymal stem cells and dendritic cell-derived exosomes in different studies have been under intense investigation and even they are being studied in different clinical trials. Therefore, all these striking functions described for secretome implies the importance of these biocarriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号