首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.  相似文献   

2.
Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min−1 (mg protein−1). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone.  相似文献   

3.
Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8‐fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC‐MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N2 and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme.  相似文献   

4.
Dissolved methane was investigated in the water column of eutrophic Lake Plußsee and compared to temperature, oxygen, and sulfide profiles. Methane concentrations and δ-13C signatures indicated a zone of aerobic methane oxidation and additionally a zone of anaerobic methane oxidation in the anoxic water body. The latter coincided with a peak in hydrogen sulfide concentration. High cell numbers of aerobic and anaerobic methane-oxidizing microorganisms were detected by fluorescence in situ hybridization (FISH) or the more sensitive catalyst-amplified reporter deposition-FISH, respectively, in these layers.  相似文献   

5.
This study evaluates rates and pathways of methane (CH4) oxidation and uptake using 14C‐based tracer experiments throughout the oxic and anoxic waters of ferruginous Lake Matano. Methane oxidation rates in Lake Matano are moderate (0.36 nmol L?1 day?1 to 117 μmol L?1 day?1) compared to other lakes, but are sufficiently high to preclude strong CH4 fluxes to the atmosphere. In addition to aerobic CH4 oxidation, which takes place in Lake Matano's oxic mixolimnion, we also detected CH4 oxidation in Lake Matano's anoxic ferruginous waters. Here, CH4 oxidation proceeds in the apparent absence of oxygen (O2) and instead appears to be coupled to some as yet uncertain combination of nitrate (), nitrite (), iron (Fe) or manganese (Mn), or sulfate () reduction. Throughout the lake, the fraction of CH4 carbon that is assimilated vs. oxidized to carbon dioxide (CO2) is high (up to 93%), indicating extensive CH4 conversion to biomass and underscoring the importance of CH4 as a carbon and energy source in Lake Matano and potentially other ferruginous or low productivity environments.  相似文献   

6.
Anoxygenic phototrophic bacteria utilize ancient metabolic pathways to link sulfur and iron metabolism to the reduction of CO2. In meromictic Lake Cadagno, Switzerland, both purple sulfur (PSB) and green sulfur anoxygenic phototrophic bacteria (GSB) dominate the chemocline community and drive the sulfur cycle. PSB and GSB fix carbon utilizing different enzymatic pathways and these fractionate C‐isotopes to different extents. Here, these differences in C‐isotope fractionation are used to constrain the relative input of various anoxygenic phototrophs to the bulk community C‐isotope signal in the chemocline. We sought to determine whether a distinct isotopic signature of GSB and PSB in the chemocline persists in the settling fraction and in the sediment. To answer these questions, we also sought investigated C‐isotope fractionation in the water column, settling material, and sediment of Lake Cadagno, compared these values to C‐isotope fractionation of isolated anoxygenic phototroph cultures, and took a mass balance approach to investigate relative contributions to the bulk fractionation signature. We found a large C‐isotope fractionation between dissolved inorganic carbon (DIC) and particulate organic carbon (POC) in the Lake Cadagno chemocline. This large fractionation between the DIC and POC was also found in culture experiments carried out with anoxygenic phototrophic bacteria isolated from the lake. In the Lake Cadagno chemocline, anoxygenic phototrophic bacteria controlled the bulk C‐isotope fractionation, but the influence of GSB and PSB differed with season. Furthermore, the contribution of PSB and GSB to bulk C‐isotope fractionation in the chemocline could be traced in the settling fraction and in the sediment. Taken together with other studies, such as lipid biomarker analyzes and investigations of other stratified lakes, these results offer a firmer understanding of diagenetic influences on bacterial biomass.  相似文献   

7.
Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 μM day−1) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.  相似文献   

8.
Seasonal microbial activity in Antarctic freshwater lake sediments   总被引:2,自引:1,他引:2  
Summary Seasonal fluctuations in population numbers and activity were monitored in bottom sediments of oligotrophic Moss Lake, mesotrophic Heywood Lake and eutrophic Amos Lake on Signy Island, South Orkney Islands, during 1976–78. Heywood and Amos Lakes became anoxic under winter ice cover (8–10 months) and significant populations of facultatively anaerobic heterotrophs and sulphate-reducing bacteria developed. In contrast, Moss Lake surface sediments never became anoxic and anaerobic bacteria were virtually absent. Direct microscopic counts and viable plate counts fluctuated relatively little in Moss Lake throughout the study period, whereas distinct seasonality was observed in the more enriched lake systems. Similarly, measurements of oxygen consumption and dark 14CO2 uptake by mud cores indicated no obvious seasonal fluctuations in Moss Lake data, in contrast to the marked seasonal pattern observed in data from the other lakes. In these latter systems, oxygen uptake rates were highest in summer (c. 400 mg O2 m-2 d-1) and virtually undetectable in winter. Comparison of oxygen uptake with oxygen concentration and temperature revealed differences, between lakes, in uptake response to oxygen concentration, whereas uptake response to temperature did not differ significantly between lakes. Chemosynthetic production in the Signy Island lake sediments was in the range 1.6–35.3 g C m-2 (mud surface) d-1 with highest values recorded in Amos Lake under winter ice cover and anoxic conditions. The findings from this and earlier studies of the three lakes have been assembled to indicate the relative importance of green plants and bacteria to the carbon cycle in these permanently cold systems.  相似文献   

9.
Depth profiles of oxygen concentration and the redox status of acid-extractable iron were measured in littoral sediment cores of Lake Constance incubated under a light–dark regimen of 12 h. While oxygen penetrated to 3.4±0.2 mm depth in the dark, photosynthetic oxygen production shifted the oxic–anoxic interface down to 4.0±0.2 mm or 5.9±1.6 mm depth, at low or high light intensity, respectively, and caused a net oxygen efflux into the water column. After a light–dark or dark–light transition, the oxygen concentration at the sediment surface reached a new steady state within about 20 min. The redox state of the bioavailable iron was determined in 1-mm slices of sediment subcores. After a dark period of 12 h, 85% of the acid-extractable iron (10.5 μmol cm−3 total) in the uppermost 8 mm was in the reduced state. Within 12 h at low or high light intensity, the proportion of ferrous iron decreased to 82 or 75%, respectively, corresponding to net rates of iron oxidation in the range of 244 and 732 nmol cm−3 h−1, respectively. About 55 or 82% of the iron oxidation at low or high light intensity occurred in the respective oxic zone of the sediment; the remaining part was oxidized in the anoxic zone, probably coupled to nitrate reduction. The areal rates of iron oxidation in the respective oxic layer (21 or 123 nmol cm−2 h−1 at low or high light intensity, respectively) would account for 4 and 23% of the total electron flow to oxygen, respectively. Light changes caused a rapid migration of the oxic–anoxic interface in the sediment, followed by a slow redox reaction of biologically available iron, thus providing temporal niches for aerobic iron oxidizers and anaerobic iron reducers.  相似文献   

10.
Dissolved methane was investigated in the water column of eutrophic Lake Plusssee and compared to temperature, oxygen, and sulfide profiles. Methane concentrations and delta-13C signatures indicated a zone of aerobic methane oxidation and additionally a zone of anaerobic methane oxidation in the anoxic water body. The latter coincided with a peak in hydrogen sulfide concentration. High cell numbers of aerobic and anaerobic methane-oxidizing microorganisms were detected by fluorescence in situ hybridization (FISH) or the more sensitive catalyst-amplified reporter deposition-FISH, respectively, in these layers.  相似文献   

11.
This is the first report describing the complete oxidation of dimethyl sulfide (DMS) to sulfate by an anoxygenic, phototrophic purple sulfur bacterium. Complete DMS oxidation was observed in cultures of Thiocapsa roseopersicina M11 incubated under oxic/light conditions, resulting in a yield of 30.1 mg protein mmol–1. No oxidation of DMS occurred under anoxic/light conditions. Chloroform, methyl butyl ether, and 3-amino-1,2,4-triazole, which are specific inhibitors of aerobic DMS oxidation in thiobacilli and hyphomicrobia, did not affect DMS oxidation in strain M11. This could be due to limited transport of the inhibitors through the cell membrane. The growth yield on sulfide as sole electron donor was 22.2 mg protein mmol–1 under anoxic/light conditions. Since aerobic respiration of sulfide would have resulted in yields lower than 22 mg protein mmol–1, the higher yield on DMS under oxic/light conditions suggests that the methyl groups of DMS have served as an additional carbon source or as an electron donor in addition to the sulfide moiety. The kinetic parameters V max and K m for DMS oxidation under oxic/light conditions were 12.4 ± 1.3 nmol (mg protein)–1 min–1 and 2 μM, respectively. T. roseopersicina M11 also produced DMS by cleavage of dimethylsulfoniopropionate (DMSP). Specific DMSP cleavage rates increased with increasing initial substrate concentrations, suggesting that DMSP lyase was only partly induced at lower initial DMSP concentrations. A comparison of T. roseopersicina strains revealed that only strain M11 was able to oxidize DMS and cleave DMSP. Both strain M11 and strain 5811 accumulated DMSP intracellularly during growth, while strain 1711 showed neither of these characteristics. Phylogenetic comparison based on 16S rRNA gene sequence revealed a similarity of 99.0% between strain M11 and strain 5811, and 97.6% between strain M11 and strain 1711. DMS and DMSP utilization thus appear to be strain-specific. Received: 26 March 1999 / Accepted: 18 June 1999  相似文献   

12.
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with 15N-labeled ammonium, CO2 dark fixation measurements and quantification of AOA by catalyzed reporter deposition–fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122–884 nmol l−1per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5–6.9 × 105 cells per ml) and CO2 fixation elevated. In the presence of the archaeal-specific inhibitor GC7, nitrification was reduced by 86–100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps.  相似文献   

13.
Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the γ-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.  相似文献   

14.
Hypolimnetic anoxic water of Lake Onogawa was subjected to aeration experiments. When the samples were agitated by magnetic stirrers for 24 h, dissolved oxygen increased from 0 to more than 7.6 mg l−1, dissolved iron decreased from 98% to about 5% of the initial total iron, and from 32% to 48% of the dissolved organic carbon (DOC) disappeared. On the other hand, when the anoxic waters were left unstirred, dissolved oxygen increased from 0 to 2.2 mg l−1, dissolved iron decreased from 98% to 31%, and 20% of the DOC disappeared within 48 h. Further 24-h incubation had little effect on the DOC loss, although dissolved oxygen increased to 3.9 mg l−1 and dissolved iron decreased to 5%. These rates of DOC disappearance are too large to be explained by bacterial decomposition. It is quite conceivable that a part of the DOC is coprecipitated with iron(III) precipitates. When Fe(II) in the anoxic hypolimnion is oxidized by autumnal water mixing, probably anoxic water is mixed with aerobic water. The anoxic water must receive oxygen from the aerobic water during this mixing and be simultaneously diluted with the aerobic water. Because the present experimental conditions, especially the stirred one, significantly differ from in situ conditions, the present results are thought to be a potential capacity of DOC coprecipitation.  相似文献   

15.
At two stations surveyed in Nitinat Lake, a ~200‐m‐deep anoxic tidal fjord, sulfide was detected as close as 15 m from the surface. Biological characterization, determined from small subunit ribosomal RNA gene sequencing, of the chemocline and anaerobic zone revealed many sequences related to sulfur‐oxidizing bacteria, suggesting that sulfur cycling is a dominant process. γ‐ and ε‐Proteobacteria related to thiotrophic symbionts, as well as Chlorobium sp., dominated the transition zone. These are expected to play a role in dark and phototrophic CO2 fixation, respectively. ε‐Proteobacteria phylotype abundance increased with depth, eventually comprising 69–97% of all sequences recovered from the anoxic zone. The vast majority (74%) of these phylotypes were affiliated with a novel Acrobacter sp. group (NITEP5). Quantification of NITEP5 revealed that up to 2.8 × 105 cells ml?1 were present in the anoxic zone. Surprisingly, although sequences related to known sulfate‐reducing bacteria were recovered from the transition zone, quantification of the dsr gene and 35SO42? uptake tests suggest that sulfate‐reduction within the water column is negligible. Overall, sequence diversity between different vertical zones was high, although the spatial segregation of γ‐Proteobacteria, Chlorobi, and ε‐Proteobacteria did not appear to vary significantly between seasons.  相似文献   

16.
We investigated the diversity of nitrogenase genes in the alkaline, moderately hypersaline Mono Lake, California to determine (1) whether nitrogen-fixing (diazotrophic) populations were similar to those in other aquatic environments and (2) if there was a pattern of distribution of phylotypes that reflected redox conditions, as well as (3) to identify populations that could be important in N dynamics in this nitrogen-limited lake. Mono Lake has been meromictic for almost a decade and has steep gradients in oxygen and reduced compounds that provide a wide range of aerobic and anaerobic habitats. We amplified a fragment of the nitrogenase gene (nifH) from planktonic DNA samples collected at three depths representing oxygenated surface waters, the oxycline, and anoxic, ammonium-rich deep waters. Forty-three percent of the 90 sequences grouped in nifH Cluster I. The majority of clones (57%) grouped in Cluster III, which contains many known anaerobic bacteria. Cluster I and Cluster III sequences were retrieved at every depth indicating little vertical zonation in sequence types related to the prominent gradients in oxygen and ammonia. One group in Cluster I was found most often at every depth and accounted for 29% of all the clones. These sequences formed a subcluster that contained other environmental clones, but no cultivated representatives. No significant nitrogen fixation was detected by the 15N2 method after 48 h of incubation of surface, oxycline, or deep waters, suggesting that pelagic diazotrophs were contributing little to nitrogen fluxes in the lake. The failure to measure any significant nitrogen fixation, despite the detection of diverse and novel nitrogenase genes throughout the water column, raises interesting questions about the ecological controls on diazotrophy in Mono Lake and the distribution of functional genes in the environment.  相似文献   

17.
Mining operations produce large quantities of wastewater. At a mine site in Northern Finland, two natural peatlands are used for the treatment of mining-influenced waters with high concentrations of sulphate and potentially toxic arsenic (As). In the present study, As removal and the involved microbial processes in those treatment peatlands (TPs) were assessed. Arsenic-metabolizing microorganisms were abundant in peat soil from both TPs (up to 108 cells gdw−1), with arsenate respirers being about 100 times more abundant than arsenite oxidizers. In uninhibited microcosm incubations, supplemented arsenite was oxidized under oxic conditions and supplemented arsenate was reduced under anoxic conditions, while little to no oxidation/reduction was observed in NaN3-inhibited microcosms, indicating high As-turnover potential of peat microbes. Formation of thioarsenates was observed in anoxic microcosms. Sequencing of the functional genemarkers aioA (arsenite oxidizers), arrA (arsenate respirers) and arsC (detoxifying arsenate reducers) demonstrated high diversity of the As-metabolizing microbial community. The microbial community composition differed between the two TPs, which may have affected As removal efficiencies. In the present situation, arsenate reduction is likely the dominant net process and contributes substantially to As removal. Changes in TP usage (e.g. mine closure) with lowered water tables and heightened oxygen availability in peat might lead to re-oxidation and re-mobilization of bound arsenite.  相似文献   

18.
Depth profiles of oxygen concentration and the redox status of acid-extractable iron were measured in littoral sediment cores of Lake Constance after mechanical removal of surface sediment, mixing, and re-deposition. In undisturbed sediment cores, oxygen penetrated down to 2.9±0.4 mm or 4.6±0.4 mm depth, respectively, after 12 h of incubation in the dark or light; causing a net diffusive flux of 108±20 nmol cm−2 h−1 oxygen into or 152±35 nmol cm−2 h−1 out of the sediment. The uppermost 20 mm layer of the undisturbed sediment cores contained 10.2± 0.7 μmol cm−3 ferrous and 3.8±1.1 μmol cm−3 ferric iron. After erosion, the oxic–anoxic interface in the newly exposed sediment was shifted to about 2 mm depth within 30 min, causing an oxygen flow into the sediment. During the following 12 h, oxygen penetrated deeper into the sediment, and in the light oxygen was produced photosynthetically. Ferrous iron was largely oxidized within two days after erosion. The oxidation rates were higher in oxic than in anoxic sediment layers, and decreased with time. This oxidation process took the longer and was confined closer to the surface the more reduced the exposed sediment had been before. Resuspension of eroded sediment in aerated lake water did not cause a significant oxidation or reduction of iron. After re-deposition, the oxic–anoxic interface in the re-sedimented material shifted to about 2 mm depth within 30 min, causing an oxygen flow into the sediment. During the following 12 h, the oxygen penetration depth and the oxygen flow rate into the re-deposited sediment did not change any further, and no oxygen was produced in the light. Ferric iron was reduced during the first day after re-deposition, and partly re-oxidized during the second day. The extent of reduction was stronger and the extent of oxidation weaker the more reduced the resuspended sediment was before. Oxic conditions in the sediment surface were established faster and ferrous iron was oxidized to a larger extent after erosion of sediment than after resuspension and sedimentation.  相似文献   

19.
Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate – including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data – as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non‐phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.  相似文献   

20.
A push-pull method, previously used in groundwater analyses, was successfully adapted for measuring sulfide turnover rates in situ at different depths in the meromictic Lake Cadagno. In the layer of phototrophic bacteria at about 12 m in depth net sulfide consumption was observed during the day, indicating active bacterial photosynthesis. During the night the sulfide turnover rates were positive, indicating a net sulfide production from the reduction of more-oxidized sulfur compounds. Because of lack of light, no photosynthesis takes place in the monimolimnion; thus, only sulfide formation is observed both during the day and the night. Sulfide turnover rates in the oxic mixolimnion were always positive as sulfide is spontaneously oxidized by oxygen and as the rates of sulfide oxidation depend on the oxygen concentrations present. Sulfide oxidation by chemolithotrophic bacteria may occur at the oxicline, but this cannot be distinguished from spontaneous chemical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号