首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.  相似文献   

2.
Elucidating the mechanisms underlying microbial succession is a major goal of microbial ecology research. Given the increasing human pressure on the environment and natural resources, responses to the repeated introduction of organic and inorganic pollutants are of particular interest. To investigate the temporal dynamics of microbial communities in response to pollutants, we analysed the microbial community structure in batch microcosms that were inoculated with soil bacteria following exposure to individual or combined pollutants (phenanthrene, n‐octadecane, phenanthrene + n‐octadecane and phenanthrene + n‐octadecane + CdCl2). Subculturing was performed at 10‐day intervals, followed by high‐throughput sequencing of 16S rRNA genes. The dynamics of microbial communities in response to different pollutants alone and in combination displayed similar patterns during enrichment. Specifically, the repression and induction of microbial taxa were dominant, and the fluctuation was not significant. The rate of appearance for new taxa and the temporal turnover within microbial communities were higher than the rates reported in other studies of microbial communities in air, water and soil samples. In addition, conditionally rare taxa that were specific to the treatments exhibited higher betweenness centrality values in the co‐occurrence network, indicating a strong influence on other interactions in the community. These results suggest that the repeated introduction of pollutants could accelerate microbial succession in microcosms, resulting in the rapid re‐equilibration of microbial communities.  相似文献   

3.
Aquatic sediments harbour diverse microbial communities that mediate organic matter degradation and influence biogeochemical cycles. The pool of bioavailable carbon continuously changes as a result of abiotic processes and microbial activity. It remains unclear how microbial communities respond to heterogeneous organic matrices and how this ultimately affects heterotrophic respiration. To explore the relationships between the degradation of mixed carbon substrates and microbial activity, we incubated batches of organic‐rich sediments in a novel bioreactor (IsoCaRB) that permitted continuous observations of CO2 production rates, as well as sequential sampling of isotopic signatures (δ13C, Δ14C), microbial community structure and diversity, and extracellular enzyme activity. Our results indicated that lower molecular weight (MW), labile, phytoplankton‐derived compounds were degraded first, followed by petroleum‐derived exogenous pollutants, and finally by higher MW polymeric plant material. This shift in utilization coincided with a community succession and increased extracellular enzyme activities. Thus, sequential utilization of different carbon pools induced changes at both the community and cellular level, shifting community composition, enzyme activity, respiration rates, and residual organic matter reactivity. Our results provide novel insight into the accessibility of sedimentary organic matter and demonstrate how bioavailability of natural organic substrates may affect the function and composition of heterotrophic bacterial populations.  相似文献   

4.
Subterranean estuaries (STEs), the zones in which seawater and subsurface groundwater mix, are recognized as hotspots for biogeochemical reactions; however, little is known of the microbial communities that control many of those reactions. This study investigated the potential functions of microbes inhabiting a cenote and an offshore submarine spring (Pargos) in the near-coastal waters of the Yucatan Peninsula, Mexico. The inland cenote (Cenote Siete Bocas; C7B) is characterized by a chemocline that is host to an array of physicochemical gradients associated with microbial activities. The chemocline includes an increasing gradient in sulfide concentrations with depth and a decreasing gradient in nitrate concentrations. The microbial community within the chemocline was dominated by Sulfurimonas and Sulfurovum of the Campylobacteria, which are likely responsible for sulfide oxidation coupled with nitrate reduction. Although C7B has not been directly connected with Pargos Spring, water discharging from the spring has physicochemical characteristics and microbial community structures similar to C7B, strongly suggesting biogeochemical processing in the STE impacts groundwater composition prior to discharge. This work yields insight into the microbial communities and biogeochemical reactions in STEs in karstic aquifers and provides evidence for the importance of Campylobacteria in controlling nitrate concentrations exported to marine springs.  相似文献   

5.
Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly influences microbial ecology and biogeochemical cycling in the environment. In this study, we examined the catabolic temperature response of natural communities of sulfate-reducing microorganisms (SRM) in polar, temperate and tropical marine sediments. In short-term sediment incubation experiments with 35S-sulfate, we demonstrated how the cardinal temperatures for sulfate reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations of the dominant SRM in each of the investigated ecosystems. The community structure of putative SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with similar mean annual temperatures, regardless of geographic distance. The observed temperature adaptations of SRM imply that environmental temperature is a major controlling variable for physiological selection and ecological and evolutionary differentiation of microbial communities.  相似文献   

6.
7.
Cyanophages are viruses that infect the cyanobacteria, globally important photosynthetic microorganisms. Cyanophages are considered significant components of microbial communities, playing major roles in influencing host community diversity and primary productivity, terminating cyanobacterial water blooms, and influencing biogeochemical cycles. Cyanophages are ubiquitous in both marine and freshwater systems; however, the majority of molecular research has been biased toward the study of marine cyanophages. In this study, a diagnostic probe was developed to detect freshwater cyanophages in natural waters. Oligonucleotide PCR-based primers were designed to specifically amplify the major capsid protein gene from previously characterized freshwater cyanomyoviruses that are infectious to the filamentous, nitrogen-fixing cyanobacterial genera Anabaena and Nostoc. The primers were also successful in yielding PCR products from mixed virus communities concentrated from water samples collected from freshwater lakes in the United Kingdom. The probes are thought to provide a useful tool for the investigation of cyanophage diversity in freshwater environments.  相似文献   

8.
Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.  相似文献   

9.
10.
Marine Archaea are crucial in biogeochemical cycles, but their horizontal spatial variability, assembly processes, and microbial associations across complex coastal waters still lack characterizations at high coverage. Using a dense sampling strategy, we investigated horizontal variability in total archaeal, Thaumarchaeota Marine Group (MG) I, and Euryarchaeota MGII communities and associations of MGI/MGII with other microbes in surface waters with contrasting environmental characteristics across ~200 km by 16S rRNA gene amplicon sequencing. Total archaeal communities were extremely dominated by MGI and/or MGII (98.9% in average relative abundance). Niche partitioning between MGI and MGII or within each group was found across multiple environmental gradients. “Selection” was more important than “dispersal limitation” in governing biogeographic patterns of total archaeal, MGI, and MGII communities, and basic abiotic parameters (such as salinity) and inorganic/organic resources as a whole could be the main driver of “selection”. While “homogenizing dispersal” also considerably governed their biogeography. MGI‐Nitrospira assemblages were speculatively responsible for complete nitrification. MGI taxa commonly had negative correlations with members of Synechococcus but positive correlations with members of eukaryotic phytoplankton, suggesting that competition or synergy between MGI and phytoplankton depends on specific MGI‐phytoplankton assemblages. MGII taxa showed common associations with presumed (photo)heterotrophs including members of SAR11, SAR86, SAR406, and Candidatus Actinomarina. This study sheds light on ecological processes and drivers shaping archaeal biogeography and many strong MGI/MGII‐bacterial associations across complex subtropical coastal waters. Future efforts should be made on seasonality of archaeal biogeography and biological, environmental, or ecological mechanisms underlying these statistical microbial associations.  相似文献   

11.
Environmental microbial community analysis typically involves amplification by PCR, despite well-documented biases. We have developed two methods of PCR-independent microbial community analysis using the high-density microarray PhyloChip: direct hybridization of 16S rRNA (dirRNA) or rRNA converted to double-stranded cDNA (dscDNA). We compared dirRNA and dscDNA communities to PCR-amplified DNA communities using a mock community of eight taxa, as well as experiments derived from three environmental sample types: chromium-contaminated aquifer groundwater, tropical forest soil, and secondary sewage in seawater. Community profiles by both direct hybridization methods showed differences that were expected based on accompanying data but that were missing in PCR-amplified communities. Taxon richness decreased in RNA compared to that in DNA communities, suggesting a subset of 20% in soil and 60% in groundwater that is active; secondary sewage showed no difference between active and inactive populations. Direct hybridization of dscDNA and RNA is thus a viable alternative to PCR-amplified microbial community analysis, providing identification of the active populations within microbial communities that attenuate pollutants, drive global biogeochemical cycles, or proliferate disease states.  相似文献   

12.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

13.
Zooplankton provide microhabitats for bacteria, but factors which influence zooplankton-associated bacterial abundance are not well known. Through a year-long field study, we measured the concentration of free-living bacteria and bacteria associated with the dominant mesozooplankters Acartia tonsa and Balanus sp. Free-living bacteria peaked in the summer, while zooplankton-associated bacteria peaked in summer and winter. No relationships were found between bacterial abundance per individual and zooplankter width, length, surface area or body volume. Multiple regression analyses indicated that free-living and Acartia-associated bacterial concentrations were explained by temperature, salinity, ammonium, chl a, and all term interactions. Balanus-associated bacterial concentration was explained by ammonium and phosphate. Ammonium significantly influenced all sampled bacterial communities. In laboratory experiments, copepods raised under high ammonium concentration had higher bacterial concentrations than those raised under low ammonium condition. Transplant experiments showed that high ammonium favored loosely attached bacteria, whereas low ammonium selected for firmly attached bacteria, suggesting greater exchange between free-living and zooplankton-associated bacterial communities in nutrient-rich systems. Additional sampling of other zooplankton taxa all showed high bacterial concentrations, supporting the notion that zooplankton function as microbial hotspots and may play an important, yet overlooked, role in marine biogeochemical cycles.  相似文献   

14.
15.
In this review, we present a conceptual model which links plant communities and saprotrophic microbial communities through the reciprocal exchange of growth-limiting resources. We discuss the numerous ways human-induced environmental change has directly and indirectly impacted this relationship, and review microbial responses that have occurred to date. We argue that compositional shifts in saprotrophic microbial communities underlie functional responses to environmental change that have ecosystem-level implications. Drawing on a long-term, large-scale, field experiment, we illustrate how and why chronic atmospheric N deposition can alter saprotrophic communities in the soil of a wide-spread sugar maple (Acer saccharum) ecosystem in northeastern North America, resulting in the slowing of plant litter decay, the rapid accumulation of soil organic matter, and the accelerated production and loss of dissolved organic carbon (DOC). Compositional shifts in soil microbial communities, mediated by ecological interactions among soil saprotrophs, appear to lie at the biogeochemical heart of ecosystem response to environmental change.  相似文献   

16.
代梨梨  彭亮  陶玲  郝柳柳  张辉  李谷 《微生物学报》2023,63(10):3811-3824
硫酸盐引起的生态学效应已得到了越来越多的关注,但目前关于硫酸盐对养殖池塘底泥微生物的影响还知之甚少。【目的】探究不同浓度硫酸盐对养殖池塘底泥微生物的影响规律及可能的机制。【方法】本研究利用采集自养殖池塘的底泥和表层水构建了试验系统,研究了加入约0 mg/L (对照组)、30 mg/L (T1处理组)、150 mg/L (T2处理组)、500 mg/L (T3处理组) Na2SO4后表层底泥微生物的丰度、多样性、组成和共生网络的变化规律,并分析了环境影响因素。【结果】孵育第30天前,各实验组底泥微生物变化不大;但到第50天时,T2和T3处理组微生物丰度和多样性相比对照组均明显下降。相比其他实验组,T1处理组酸杆菌门(Acidobacteriota)、拟杆菌门(Bacteroidota)相对丰度出现显著升高(P<0.05),T3处理组变形菌门(Proteobacteria)和放线菌门(Actinobacteriota)相对丰度出现显著升高(P<0.05)。与对照组相比,T1处理组增加了较多差异类群(62种),而T3处理组差异类群大量减少(45种)。共生网络图分析显示硫酸盐浓度的增加引起了底泥微生物网络复杂性的增加,说明微生物群落可能通过自身的调节来响应硫酸盐引起的环境改变。冗余分析(redundant analysis,RDA)和相关性分析揭示底泥总有机碳、总氮和氧化还原电位是影响底泥微生物的主要环境因素,提示底泥微生物可能受到硫酸盐和有机质作用的影响。【结论】较长时间的高浓度硫酸盐会对池塘底泥微生物群落造成重要影响,微生物群落自身的转变和硫酸盐引起的有机质分解改变可能是造成微生物群落变化的关键因素。  相似文献   

17.
Microbes drive the biogeochemical cycles of marine ecosystems through their vast metabolic diversity. While we have a fairly good understanding of the spatial distribution of these metabolic processes in various ecosystems, less is known about their seasonal dynamics. We investigated the annual patterns of 21 biogeochemical relevant functions in an oligotrophic coastal ocean site by analysing the presence of key genes, analysing high-rank gene taxonomy and the dynamics of nucleotide variants. Most genes presented seasonality: photoheterotrophic processes were enriched during spring, phosphorous-related genes were dominant during summer, coinciding with potential phosphate limitation, and assimilatory nitrate reductases appeared mostly during summer and autumn, correlating negatively with nitrate availability. Additionally, we identified the main taxa driving each function at each season and described the role of underrecognized taxa such as Litoricolaceae in carbon fixation (rbcL), urea degradation (ureC), and CO oxidation (coxL). Finally, the seasonality of single variants of some families presented a decoupling between the taxonomic abundance patterns and the functional gene patterns, implying functional specialization of the different genera. Our study unveils the seasonality of key biogeochemical functions and the main taxonomic groups that harbour these relevant functions in a coastal ocean ecosystem.  相似文献   

18.
Soil microbial communities are the key drivers of many terrestrial biogeochemical processes. However, we currently lack a generalizable understanding of how these soil communities will change in response to predicted increases in global temperatures and which microbial lineages will be most impacted. Here, using high‐throughput marker gene sequencing of soils collected from 18 sites throughout North America included in a 100‐day laboratory incubation experiment, we identified a core group of abundant and nearly ubiquitous soil microbes that shift in relative abundance with elevated soil temperatures. We then validated and narrowed our list of temperature‐sensitive microbes by comparing the results from this laboratory experiment with data compiled from 210 soils representing multiple, independent global field studies sampled across spatial gradients with a wide range in mean annual temperatures. Our results reveal predictable and consistent responses to temperature for a core group of 189 ubiquitous soil bacterial and archaeal taxa, with these taxa exhibiting similar temperature responses across a broad range of soil types. These microbial ‘bioindicators’ are useful for understanding how soil microbial communities respond to warming and to discriminate between the direct and indirect effects of soil warming on microbial communities. Those taxa that were found to be sensitive to temperature represented a wide range of lineages and the direction of the temperature responses were not predictable from phylogeny alone, indicating that temperature responses are difficult to predict from simply describing soil microbial communities at broad taxonomic or phylogenetic levels of resolution. Together, these results lay the foundation for a more predictive understanding of how soil microbial communities respond to soil warming and how warming may ultimately lead to changes in soil biogeochemical processes.  相似文献   

19.
Soil microbial communities regulate global biogeochemical cycles and respond rapidly to changing environmental conditions. However, understanding how soil microbial communities respond to climate change, and how this influences biogeochemical cycles, remains a major challenge. This is especially pertinent in alpine regions where climate change is taking place at double the rate of the global average, with large reductions in snow cover and earlier spring snowmelt expected as a consequence. Here, we show that spring snowmelt triggers an abrupt transition in the composition of soil microbial communities of alpine grassland that is closely linked to shifts in soil microbial functioning and biogeochemical pools and fluxes. Further, by experimentally manipulating snow cover we show that this abrupt seasonal transition in wide-ranging microbial and biogeochemical soil properties is advanced by earlier snowmelt. Preceding winter conditions did not change the processes that take place during snowmelt. Our findings emphasise the importance of seasonal dynamics for soil microbial communities and the biogeochemical cycles that they regulate. Moreover, our findings suggest that earlier spring snowmelt due to climate change will have far reaching consequences for microbial communities and nutrient cycling in these globally widespread alpine ecosystems.Subject terms: Metagenomics, Climate-change ecology, Microbial ecology, Biogeochemistry, Soil microbiology  相似文献   

20.
Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号