首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Chanhee Kang 《Autophagy》2016,12(5):898-899
Autophagy and cellular senescence are stress responses essential for homeostasis. While recent studies indicate a genetic relationship between autophagy and senescence, whether autophagy acts positively or negatively on senescence is still subject to debate. Although autophagy was originally recognized as a nonspecific lysosomal degradation pathway (general autophagy), increasing evidence supports a selective form of autophagy that mediates the degradation of specific targets (selective autophagy). Our recent study revealed distinctive roles of selective autophagy and general autophagy in the regulation of senescence, at least in part resolving apparently contradictory reports regarding the relationship between these 2 important homeostatic stress responses.  相似文献   

2.
Ya-Qin Tan  Jing Zhang 《Autophagy》2017,13(2):225-236
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.  相似文献   

3.
The decline of the immune system with age known as immune senescence contributes to inefficient pathogen clearance and is a key risk factor for many aged‐related diseases. However, reversing or halting immune aging requires more knowledge about the cell biology of senescence in immune cells. Telomere shortening, low autophagy and mitochondrial dysfunction have been shown to underpin cell senescence. While autophagy has been found to control mitochondrial damage, no link has been made to telomere attrition. In contrast, mitochondrial stress can contribute to telomere attrition and vice versa. Whereas this link has been investigated in fibroblasts or cell lines, it is unclear whether this link exists in primary cells such as human lymphocytes and whether autophagy contributes to it. As traditional methods for measuring telomere length are low throughput or unsuitable for the analysis of cell subtypes within a mixed population of primary cells, we have developed a novel sensitive flow‐FISH assay using the imaging flow cytometer. Using this assay, we show a correlation between age and increased mitochondrial reactive oxygen species in CD8+ T‐cell subsets, but not with autophagy. Telomere shortening within the CD8+ subset could be prevented in vitro by treatment with a ROS scavenger. Our novel assay is a sensitive assay to measure relative telomere length in primary cells and has revealed ROS as a contributing factor to the decline in telomere length.  相似文献   

4.
《Autophagy》2013,9(3):407-409
Autophagy is triggered by ceramide, a sphingolipid that regulates diverse cellular processes including survival, differentiation, and senescence. Both ceramide and autophagy play important, but incompletely understood, roles in type 2 diabetes and cancer. We reasoned that defining the connection between ceramide and autophagy might provide important insight into these highly prevalent diseases. Our recently published work demonstrates that ceramide-induced autophagy is a homeostatic response to starvation caused by nutrient transporter down-regulation. Preventing nutrient transporter loss or supplementation with transporter-independent nutrients protects cells from ceramide-induced death and delays the onset of autophagy. Thus, we propose a model where ceramide kills cells by inducing acute and severe intracellular nutrient limitation. Consistent with this idea, AMPK-deficient cells that are less able to deal with bioenergetic stress are also more sensitive to ceramide than wild-type cells. Our observation that gradually adapting cells to tolerate low levels of extracellular nutrients confers striking resistance to ceramide toxicity further supports this model. These results highlight the value of measuring nutrient transporter expression in cells undergoing protective autophagy. In addition, this novel mechanism for ceramide-induced cell death suggests new approaches to studying and treating multiple human diseases.  相似文献   

5.
Autophagy and inflammation are 2 fundamental biological processes involved in both physiological and pathological conditions. Through its crucial role in maintaining cellular homeostasis, autophagy is involved in modulation of cell metabolism, cell survival, and host defense. Defective autophagy is associated with pathological conditions such as cancer, autoimmune disease, neurodegenerative disease, and senescence. Inflammation represents a crucial line of defense against microorganisms and other pathogens, and there is increasing evidence that autophagy has important effects on the induction and modulation of the inflammatory reaction; understanding the balance between these 2 processes may point to important possibilities for therapeutic targeting. This review focuses on the crosstalk between autophagy and inflammation as an emerging field with major implications for understanding the host defense on the one hand, and for the pathogenesis and treatment of immune-mediated diseases on the other hand.  相似文献   

6.
Plant autophagy--more than a starvation response   总被引:1,自引:0,他引:1  
Autophagy is a conserved mechanism for the degradation of cellular contents in order to recycle nutrients or break down damaged or toxic material. This occurs by the uptake of cytoplasmic constituents into the vacuole, where they are degraded by vacuolar hydrolases. In plants, autophagy has been known for some time to be important for nutrient remobilization during sugar and nitrogen starvation and leaf senescence, but recent research has uncovered additional crucial roles for plant autophagy. These roles include the degradation of oxidized proteins during oxidative stress, disposal of protein aggregates, and possibly even removal of damaged proteins and organelles during normal growth conditions as a housekeeping function. A surprising regulatory function for autophagy in programmed cell death during the hypersensitive response to pathogen infection has also been identified.  相似文献   

7.
《Autophagy》2013,9(2):296-310
Growing evidence has demonstrated that autophagy plays important and paradoxical roles in carcinogenesis, while senescence is considered to be a crucial tumor-suppressor mechanism in cancer prevention and treatment. In the present study we demonstrated that both autophagy and senescence were induced in response to penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG), a chemopreventive polyphonolic compound, in multiple types of cancer cells. Analysis of these 2 events over the experimental time course indicated that autophagy and senescence occurred in parallel early in the process and dissociated later. The long-term culture study suggested that a subpopulation of senescent cells may have the capacity to reenter the cell cycle. Inhibition of autophagy by either a chemical inhibitor or RNA interference led to a significant reduction of PGG-induced senescence, followed by induction of apoptosis. These results suggested that autophagy promoted senescence induction by PGG and that PGG might exert its anticancer activity through autophagy-mediated senescence. For the first time, these findings uncovered the relationships among autophagy, senescence, and apoptosis induced by PGG. In addition, we identified that unfolded protein response signaling played a pivotal role in the autophagy-mediated senescence phenotype. Furthermore, our data showed that activation of MAPK8/9/10 (mitogen-activated protein kinase 8/9/10/c-Jun N-terminal kinases) was an essential upstream signal for PGG-induced autophagy. Finally, the key in vitro results were validated in vivo in a xenograft mouse model of human HepG2 liver cancer. Our findings provided novel insights into understanding the mechanisms and functions of PGG-induced autophagy and senescence in human cancer cells.  相似文献   

8.
Growing evidence has demonstrated that autophagy plays important and paradoxical roles in carcinogenesis, while senescence is considered to be a crucial tumor-suppressor mechanism in cancer prevention and treatment. In the present study we demonstrated that both autophagy and senescence were induced in response to penta-1,2,3,4,6-O-galloyl-β-D-glucose (PGG), a chemopreventive polyphonolic compound, in multiple types of cancer cells. Analysis of these 2 events over the experimental time course indicated that autophagy and senescence occurred in parallel early in the process and dissociated later. The long-term culture study suggested that a subpopulation of senescent cells may have the capacity to reenter the cell cycle. Inhibition of autophagy by either a chemical inhibitor or RNA interference led to a significant reduction of PGG-induced senescence, followed by induction of apoptosis. These results suggested that autophagy promoted senescence induction by PGG and that PGG might exert its anticancer activity through autophagy-mediated senescence. For the first time, these findings uncovered the relationships among autophagy, senescence, and apoptosis induced by PGG. In addition, we identified that unfolded protein response signaling played a pivotal role in the autophagy-mediated senescence phenotype. Furthermore, our data showed that activation of MAPK8/9/10 (mitogen-activated protein kinase 8/9/10/c-Jun N-terminal kinases) was an essential upstream signal for PGG-induced autophagy. Finally, the key in vitro results were validated in vivo in a xenograft mouse model of human HepG2 liver cancer. Our findings provided novel insights into understanding the mechanisms and functions of PGG-induced autophagy and senescence in human cancer cells.  相似文献   

9.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

10.
Stress-induced senescence in human and rodent astrocytes   总被引:1,自引:0,他引:1  
There is an increasing awareness that astrocytes, the most abundant cell type in the central nervous system, are critical mediators of brain homeostasis, playing multifunctional roles including buffering potassium ions, maintaining the blood-brain barrier, releasing growth factors, and regulating neurotransmitter levels. Defects in astrocyte function have been implicated in a variety of diseases including age-related diseases such Alzheimer's disease and Parkinson's disease. However, little is known about the age-related changes that occur in astrocytes and if these cells are able to generate a senescent phenotype in response to stress. In this report we have examined whether astrocytes can initiate a senescence program similar to that described in other cell types in response to a variety of stresses. Our results indicate that after oxidative stress, proteasome inhibition, or exhausted replication, human and mouse astrocytes show changes in several established markers of cellular senescence. Astrocytes appear to be more sensitive to oxidative stress than fibroblasts, suggesting that stress-induced senescence may be more pronounced in the brain than in other tissues.  相似文献   

11.
Autophagy is a vital negative factor regulating cellular senescence. Purple sweet potato color (PSPC), one type of flavonoid, has been demonstrated to suppress endothelial senescence and restore endothelial function in diabetic mice by inhibiting the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein 3 (NLRP3) inflammasome. However, the roles of autophagy in the inflammatory response during endothelial senescence are unknown. Here, we found that PSPC augmented autophagy to restrict high-glucose-induced premature endothelial senescence. In addition, PSPC administration impaired endothelium aging in diabetic mice by increasing autophagy. Inhibition of autophagy accelerated endothelial senescence, while enhancement of autophagy delayed senescence. Moreover, deactivation of the NLRP3 inflammasome triggered by PSPC was autophagy-dependent. Autophagy receptor microtubule-associated protein 1 light chain 3 and p62 interacted with the inflammasome component NLRP3, suggesting that autophagosomes target the NLRP3 inflammasome and deliver it to the lysosome for degradation. Altogether, PSPC amplified cellular autophagy, subsequently attenuated NLRP3 inflammasome activity and finally delayed endothelial senescence to ameliorate cardiovascular complication. These results suggest a potential therapeutic target in senescence-related cardiovascular diseases.  相似文献   

12.
Autophagy in development and stress responses of plants   总被引:2,自引:0,他引:2  
The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitoring autophagy in whole plants have been developed, opening the way for future studies to decipher the mechanisms and pathways of autophagy, and the function of these pathways in plant development and stress responses.  相似文献   

13.
《Autophagy》2013,9(1):2-11
The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitoring autophagy in whole plants have been developed, opening the way for future studies to decipher the mechanisms and pathways of autophagy, and the function of these pathways in plant development and stress responses.  相似文献   

14.
Autophagy, an evolutionarily conserved process of cellular homeostasis in all eukaryotes, has been heavily implicated in many aspects of human health and diseases. However, its pivotal roles, particularly in stress and adaptive responses in other species in the environment, have perhaps not received the attention they deserve. Autophagy processes may underlie important ecological phenomena such as coral bleaching, as well as various forms of responses and adaptations to environmental forcing and deterioration. Investigating and assessing autophagy responses in the contexts of environmental stresses and ecological changes would therefore be important. Such investigations in indicator organisms could provide valuable parameters for ecosystems health assessment. Understanding autophagy responses in ecologically important species could also be useful in efforts of species and biodiversity conservation.  相似文献   

15.
Xiao-Li Tian  Yang Li 《遗传学报》2014,41(9):485-495
Advanced age is an independent risk factor for ageing-related complex diseases,such as coronary artery disease,stroke,and hypertension,which are common but life threatening and related to the ageing-associated vascular dysfunction.On the other hand,patients with progeria syndromes suffer from serious atherosclerosis,suggesting that the impaired vascular functions may be critical to organismal ageing,or vice versa.However,it remains largely unknown how vascular cells,particularly endothelial cell,become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time.Here,we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo,evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the agerelated vascular phenotypes.such as atherosclerosis and increased vascular stiffness,and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.  相似文献   

16.
Ceramide generation is increased by a broad array of signals. In general, ceramide limits cell survival and proliferation and promotes differentiation and senescence. Despite its role in the pathogenesis of multiple human diseases, ceramide’s mechanism of action remains poorly defined. Understanding how this sphingolipid modulates cell physiology is therefore an important goal. Building on prior observations that ceramide induces autophagy, we demonstrate that ceramide kills cells by inducing severe bioenergetic stress secondary to nutrient transporter down-regulation. In support of this model, maintaining nutrient access blocks ceramide-induced autophagy and cell death. This bioenergetic mechanism of action may explain the increased sensitivity of cancer cells to ceramide. Starvation induces quiescence in normal cells. Tumor cells, in contrast, carry oncogenic mutations that block the switch to catabolism and prevent a reduction in metabolic demand leading to a bioenergetic crisis when nutrients become scarce. We propose that the non-lethal effects of ceramide might also stem from ceramide-induced starvation. While severe nutrient stress kills cells, mild nutrient limitation slows proliferation and may contribute to the induction of senescence. In sum, our new model for ceramide action suggests that regulated nutrient transporter expression may play a previously unappreciated role in cancer and other diseases where ceramide metabolism is altered.  相似文献   

17.
Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts. Here, we apply models of acute telomere dysfunction to determine whether autophagy modulates the resulting genome instability and senescence responses. While telomere dysfunction rapidly induces autophagic flux in human fibroblast cell lines, inhibition of the autophagy pathway does not have a significant impact upon the transition to senescence, in contrast to what has previously been reported for oncogene-induced senescence. Our results suggest that this difference may be explained by disparities in the development of the senescence-associated secretory phenotype. We also show that chromosome fusions induced by telomere dysfunction are comparable in autophagy-proficient and autophagy-deficient cells. Altogether, our results highlight the complexity of the senescence-autophagy interface and indicate that autophagy induction is unlikely to play a significant role in telomere dysfunction-driven senescence and chromosome fusions.  相似文献   

18.
Autophagy is a very well-coordinated intracellular process that maintains cellular homeostasis under basal conditions by removing unnecessary or dysfunctional components through orderly degradation and recycling. Under pathological conditions, defects in autophagy have been linked to various human disorders, including neurodegenerative disorders and cancer. The role of autophagy in stem cell proliferation, differentiation, self-renewal, and senescence is well documented. Additionally, cancer stem cells (CSCs) play an important role in tumorigenesis, metastasis and tumor relapse and several studies have suggested the involvement of autophagy in the maintenance and invasiveness of CSCs. Hence, considering the modulation of autophagy in normal and cancer stems cells as a therapeutic approach can lead to the development or improvement of regenerative and anti-cancer therapies. Accordingly, modulation of autophagy can be regarded as a target for stem cell-based therapy of diseases with abnormal levels of autophagy.This article is focused on understanding the role of autophagy in stem cell homeostasis with an emphasis on the therapeutic potential of targeting autophagy for future therapies.  相似文献   

19.
20.
活性氧对植物自噬调控的研究进展   总被引:1,自引:0,他引:1  
自噬是一种在真核生物中高度保守的降解细胞组分的生物过程, 在饥饿、衰老和病菌感染等过程中起关键作用。而活性氧是有氧生物在正常或胁迫条件下产生的一种代谢副产物, 在植物的生长发育、胁迫适应和程序性细胞死亡过程中起重要作用。最新研究结果表明, 当植物受到病菌感染产生超敏反应时活性氧和自噬在程序性细胞死亡、生长发育和胁迫适应过程中起重要调控作用。因此, 该文结合最新的研究进展, 从活性氧的种类及特点、自噬的分子基础以及活性氧在植物自噬中的作用等方面, 探讨了活性氧与植物自噬之间的信号转导关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号