首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reduction of inorganic sulfur compounds by the fungus Fusarium oxysporum was examined. When transferred from a normoxic to an anoxic environment, F. oxysporum reduced elemental sulfur to hydrogen sulfide (H2S). This reaction accompanied fungal growth and oxidation of the carbon source (ethanol) to acetate. Over 2-fold more of H2S than of acetate was produced, which is the theoretical correlation for the oxidation of ethanol to acetate. NADH-dependent sulfur reductase (SR) activity was detected in cell-free extracts of the H2S-producing fungus, and was found to be up-regulated under the anaerobic conditions. On the other hands both O2 consumption by the cells and cytochrome c oxidase activity by the crude mitochondrial fractions decreased. These results indicate that H2S production involving SR was due to a novel dissimilation mechanism of F. oxysporum, and that the fungus adapts to anaerobic conditions by replacing the energy-producing mechanism of O2 respiration with sulfur reduction.  相似文献   

2.
Hypocrealean Trichoderma are the most extensively studied facultative mycoparasites against phytopathogenic fungi. Aerial hyphae of Trichoderma guizhouense can rapidly proliferate over Fusarium oxysporum hyphae, cause sporadic cell death and arrest the growth of the host. The results of the present study demonstrated that a unique short-chain dehydrogenase/reductase (SDR), designated as TgSDR1, was expressed at a high level in T. guizhouense challenged by the hosts. Similar to other SDRs family members, the TgSDR1 protein contains a cofactor-binding motif and a catalytic site. The subcellular localization assay revealed that the TgSDR1::GFP fusion protein translocated to lipid droplets in mycelia and conidia. The data obtained using reverse genetic approach indicated that TgSDR1 is associated with antifungal ability, plays an important role in providing reducing equivalents in the form of NADPH and regulates the amino sugar and nucleotide sugar metabolism in T. guizhouense upon encountering a host. Moreover, the TgSDR1 deletion mutant was defective in conidiation. Thus, TgSDR1 functions as a key metabolic enzyme in T. guizhouense to regulate mycotrophic interactions, defence against other fungi, such as F. oxysporum, and conidiation.  相似文献   

3.
《Free radical research》2013,47(11-12):1366-1378
Abstract

The NADPH oxidase (NOX) family of enzymes oxidase catalyzes the transport of electrons from NADPH to molecular oxygen and generates O2??, which is rapidly converted into H2O2. We aimed to identify in hepatocytes the protein NOX complex responsible for H2O2 synthesis after α1-adrenoceptor (α1-AR) stimulation, its activation mechanism, and to explore H2O2 as a potential modulator of hepatic metabolic routes, gluconeogenesis, and ureagenesis, stimulated by the ARs. The dormant NOX2 complex present in hepatocyte plasma membrane (HPM) contains gp91phox, p22phox, p40phox, p47phox, p67phox and Rac 1 proteins. In HPM incubated with NADPH and guanosine triphosphate (GTP), α1-AR-mediated H2O2 synthesis required all of these proteins except for p40phox. A functional link between α1-AR and NOX was identified as the Gα13 protein. Alpha1-AR stimulation in hepatocytes promotes Rac1-GTP generation, a necessary step for H2O2 synthesis. Negative cross talk between α1-/β-ARs for H2O2 synthesis was observed in HPM. In addition, negative cross talk of α1-AR via H2O2 to β-AR-mediated stimulation was recorded in hepatocyte gluconeogenesis and ureagenesis, probably involving aquaporine activity. Based on previous work we suggest that H2O2, generated after NOX2 activation by α1-AR lightening in hepatocytes, reacts with cAMP-dependent protein kinase A (PKA) subunits to form an oxidized PKA, insensitive to cAMP activation that prevented any rise in the rate of gluconeogenesis and ureagenesis.  相似文献   

4.
Fusarium oxysporum is an important plant pathogen that causes severe damage of many economically important crop species. Various microorganisms have been shown to inhibit this soil‐borne plant pathogen, including non‐pathogenic F. oxysporum strains. In this study, F. oxysporum wild‐type (WT) MSA 35, a biocontrol multispecies consortium that consists of a fungus and numerous rhizobacteria mainly belonging to γ‐proteobacteria, was analyzed by two complementary metaproteomic approaches (2‐DE combined with MALDI‐Tof/Tof MS and 1‐D PAGE combined with LC‐ESI‐MS/MS) to identify fungal or bacterial factors potentially involved in antagonistic or synergistic interactions between the consortium members. Moreover, the proteome profiles of F. oxysporum WT MSA 35 and its cured counter‐part CU MSA 35 (WT treated with antibiotics) were compared with unravel the bacterial impact on consortium functioning. Our study presents the first proteome mapping of an antagonistic F. oxysporum strain and proposes candidate proteins that might play an important role for the biocontrol activity and the close interrelationship between the fungus and its bacterial partners.  相似文献   

5.
Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96?hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral–alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.  相似文献   

6.
Glucose is the most efficient energy source, and various cancer cells depend on glycolysis for energy production. For maintenance of survival and proliferation, glucose sensing and adaptation to poor nutritional circumstances must be well organized in cancer cells. While the glucose sensing machinery has been well studied in yeasts, the molecular mechanism of glucose sensing in mammalian cells remains to be elucidated. We have reported glucose deprivation rapidly induces AKT phosphorylation through PI3K activation. We assumed that regulation of AKT is relevant to glucose sensing and further investigated the underlying mechanisms. In this study, AKT phosphorylation under glucose deprivation was inhibited by galactose and fructose, but induced by 2-deoxyglucose (2-DG). Both 2-DG treatment and glucose deprivation were found to induce AKT phosphorylation in HepG2 cells. These findings suggested that glucose transporter may not be involved in the sensing of glucose and induction of AKT phosphorylation, and that downstream metabolic events may have important roles. A variety of metabolic stresses reportedly induce the production of reactive oxygen species (ROS). In the present study, glucose deprivation was found to induce intracellular hydrogen peroxide (H2O2) production in HepG2 cells. N-acetylcysteine (NAC), an antioxidant reagent, reduced both the increase in cellular H2O2 levels and AKT phosphorylation induced by glucose deprivation. These results strongly suggest that the glucose deprivation-induced increase of H2O2 in the cells mediated the AKT phosphorylation. RNA interference of NOX4, but not of NOX5, completely suppressed the glucose deprivation-induced AKT phosphorylation as well as increase of the intracellular levels of ROS, whereas exogenous H2O2 could still induce AKT phosphorylation in the NOX4-knockdown cells. In this study, we demonstrated that the ROS generated by NOX4 are involved in the intracellular adaptive responses by recognizing metabolic flux.  相似文献   

7.
8.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

9.
10.
Internal tandem duplication of the FMS-like tyrosine kinase (FLT3-ITD) receptor is present in 20% of acute myeloid leukemia (AML) patients and it has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (DSBs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Our group has previously reported that inhibition of FLT3-ITD signaling results in post-translational down-regulation of p22phox, a small membrane-bound subunit of the NADPH oxidase (NOX) complex. Here we demonstrated that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, have a higher protein level of p22phox and p22phox-interacting NOX isoforms than 32D cells transfected with the wild type FLT3 receptor (FLT3-WT). The inhibition of NOX proteins, p22phox, and NOX protein knockdowns caused a reduction in ROS, as measured with a hydrogen peroxide (H2O2)-specific dye, peroxy orange 1 (PO1), and nuclear H2O2, as measured with nuclear peroxy emerald 1 (NucPE1). These reductions in the level of H2O2 following the NOX knockdowns were accompanied by a decrease in the number of DNA DSBs. We showed that 32D cells that express FLT3-ITD have a higher level of both oxidized DNA and DNA DSBs than their wild type counterparts. We also observed that NOX4 and p22phox localize to the nuclear membrane in MV4–11 cells expressing FLT3-ITD. Taken together these data indicate that NOX and p22phox mediate the ROS production from FLT3-ITD that signal to the nucleus causing genomic instability.  相似文献   

11.
Transient receptor potential melastatin 2 (TRPM2) channel activation by reactive oxygen species (ROS) plays a critical role in delayed neuronal cell death, responsible for postischemia brain damage via altering intracellular Zn2+ homeostasis, but a mechanistic understanding is still lacking. Here, we showed that H2O2 induced neuroblastoma SH-SY5Y cell death with a significant delay, dependently of the TRPM2 channel and increased [Zn2+]i, and therefore used this cell model to investigate the mechanisms underlying ROS-induced TRPM2-mediated delayed cell death. H2O2 increased concentration-dependently the [Zn2+]i and caused lysosomal dysfunction and Zn2+ loss and, furthermore, mitochondrial Zn2+ accumulation, fragmentation, and ROS generation. Such effects were suppressed by preventing poly(adenosine diphosphate ribose, ADPR) polymerase-1-dependent TRPM2 channel activation with PJ34 and 3,3′,5,5′-tetra-tert-butyldiphenoquinone, inhibiting the TRPM2 channel with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid, or chelating Zn2+ with N,N,N,N-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Bafilomycin-induced lysosomal dysfunction also resulted in mitochondrial Zn2+ accumulation, fragmentation, and ROS generation that were inhibited by PJ34 or 2-APB, suggesting that these mitochondrial events are TRPM2 dependent and sequela of lysosomal dysfunction. Mitochondrial TRPM2 expression was detected and exposure to ADPR-induced Zn2+ uptake in isolated mitochondria, which was prevented by TPEN. H2O2-induced delayed cell death was inhibited by apocynin and diphenyleneiodonium, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX) inhibitors, GKT137831, an NOX1/4-specific inhibitor, or Gö6983, a protein kinase C (PKC) inhibitor. Moreover, inhibition of PKC/NOX prevented H2O2-induced ROS generation, lysosomal dysfunction and Zn2+ release, and mitochondrial Zn2+ accumulation, fragmentation and ROS generation. Collectively, these results support a critical role for the TRPM2 channel in coupling PKC/NOX-mediated ROS generation, lysosomal Zn2+ release, and mitochondrial Zn2+ accumulation, and ROS generation to form a vicious positive feedback signaling mechanism for ROS-induced delayed cell death.  相似文献   

12.
Mechanisms of the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.  相似文献   

13.
Within the family of NADPH oxidases, NOX4 is unique as it is predominantly localized in the endoplasmic reticulum, has constitutive activity, and generates hydrogen peroxide (H2O2). We hypothesize that these features are consequences of a so far unidentified NOX4-interacting protein. Two-dimensional blue native (BN) electrophorese combined with SDS-PAGE yielded NOX4 to reside in macromolecular complexes. Interacting proteins were screened by quantitative SILAC (stable isotope labeling of amino acids in cell culture) co-immunoprecipitation (Co-IP) in HEK293 cells stably overexpressing NOX4. By this technique, several interacting proteins were identified with calnexin showing the most robust interaction. Calnexin also resided in NOX4-containing complexes as demonstrated by complexome profiling from BN-PAGE. The calnexin NOX4 interaction could be confirmed by reverse Co-IP and proximity ligation assay, whereas NOX1, NOX2, or NOX5 did not interact with calnexin. Calnexin deficiency as studied in mouse embryonic fibroblasts from calnexin−/− mice or in response to calnexin shRNA reduced cellular NOX4 protein expression and reactive oxygen species formation. Our results suggest that endogenous NOX4 forms macromolecular complexes with calnexin, which are needed for the proper maturation, processing, and function of NOX4 in the endoplasmic reticulum.  相似文献   

14.
The importance of H2O2 as a cellular signaling molecule has been demonstrated in a number of cell types and pathways. Here we explore a positive feedback mechanism of H2O2-mediated regulation of the phagocyte respiratory burst NADPH oxidase (NOX2). H2O2 induced a dose-dependent stimulation of superoxide production in human neutrophils, as well as in K562 leukemia cells overexpressing NOX2 system components. Stimulation was abrogated by the addition of catalase, the extracellular Ca2+ chelator BAPTA, the T-type Ca2+ channel inhibitor mibefradil, the PKCδ inhibitor rottlerin, or the c-Abl nonreceptor tyrosine kinase inhibitor imatinib mesylate or by overexpression of a dominant-negative form of c-Abl. H2O2 induced phosphorylation of tyrosine 311 on PKCδ and this activating phosphorylation was blocked by treatment with rottlerin, imatinib mesylate, or BAPTA. Rac GTPase activation in response to H2O2 was abrogated by BAPTA, imatinib mesylate, or rottlerin. In conclusion, H2O2 stimulates NOX2-mediated superoxide generation in neutrophils and K562/NOX2 cells via a signaling pathway involving Ca2+ influx and c-Abl tyrosine kinase acting upstream of PKCδ. This positive feedback regulatory pathway has important implications for amplifying the innate immune response and contributing to oxidative stress in inflammatory disorders.  相似文献   

15.
Filamentous fungi are known as producers of a large array of diverse secondary metabolites (SMs) that aid in securing their environmental niche. Here, we demonstrated that the SMs have an additional role in fungal defence against other fungi: Trichoderma guizhouense, a mycoparasite, is able to antagonize Fusarium oxysporum f. sp. cubense race 4 (Foc4) by forming aerial hyphae that kill the host with hydrogen peroxide. At the same time, a gene cluster comprising two polyketide synthases is strongly expressed. Using functional genetics, we characterized this cluster and identified its products as azaphilones (termed as trigazaphilones). The trigazaphilones were found lacking of antifungal toxicity but exhibited high radical scavenging activities. The antioxidant property of trigazaphilones was in vivo functional under various tested conditions of oxidative stress. Thus, we conclude that the biosynthesis of trigazaphilones serves as a complementary antioxidant mechanism and defends T. guizhouense against the hydrogen peroxide that it produces to combat other fungi like Foc4.  相似文献   

16.
Reactive oxygen intermediates (ROIs), such as hydrogen peroxide (H2O2), have been implicated as second messengers in the activation of NF-κB by a variety of stimuli, including tumour necrosis factor-alpha (TNF-α). The aim of the present study was to examine the effects of ROIs on NF-κB activation in primary human CD3+ T lymphocytes and human peripheral blood mononuclear cells (PBMCs). For comparison purposes, Jurkat T cells (subclones JR and JE6.1) were also investigated. Cells were incubated in the presence of either H2O2 or TNF-α and nuclear proteins were extracted. NF-κB binding was assessed by electrophoretic mobility shift assays (EMSAs). The concentration of H2O2 required to activate NF-κB in human primary CD3+ T lymphocytes was as low as 1 μM. In contrast, much higher concentrations of H2O2 were required to activate NF-κB in PBMCs and in the JR subclone of Jurkat T cells. H2O2-induced NF-κB activation was not observed in the JE6.1 subclone of Jurkat T cells. NF-κB was activated by TNF-α in all four cell types tested. In PBMCs and Jurkat T cells (subclones JR and JE6.1), this activation could be inhibited by pre-treatment with the antioxidants, pyrrolidine dithiocarbamate (PDTC) and N-acetyl-l-cysteine (NAC). Our results support a role for ROIs in NF-κB-DNA binding in human primary T lymphocytes.  相似文献   

17.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   

18.
Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.  相似文献   

19.
The effect of the placement of inoculum of Fusarium oxysporum at two soil depths, and the sequences of inoculations with Meloidogyne arenaria and Fusarium oxysporum on root growth and development of root disease in Trifolium subterraneum L. (subterranean clover) were investigated. The timing of infection and the proximity of root tips of the host root system to infection by M. arenaria and F. oxysporum appeared to be the major determining factors of root growth and of disease development in plants exposed to the pathogens. Immediate contact of roots with F. oxysporum (where the fungus was placed at seed level of 10 mm depth) appeared to result in more severe effects on roots in the presence of the nematode than later infection by the fungus placed at 30 mm depth. The production of galls by the nematode and early infection by F. oxysporum at 10 mm depth resulted in a severe inhibition of root growth, particularly of the lateral roots. But no such growth inhibition was evident when F. oxysporum and M. arenaria were introduced together at the lower depth of 30 mm. The lowest density of M. arenaria inoculum was sufficient to cause severe root rot if F. oxysporum was present at the host seed level. With the fungus at 30 mm depth, however, the expression of root rot appeared to be influenced by the inoculum level of the nematode. In sequential inoculation with F. oxysporum or M. arenaria, the organism added 2 weeks later had little or no effect on root development. The first organism (M. arenaria or F. oxysporum) to infect the germinated seedlings was the main cause of root growth inhibition. The organism that came into contact with the roots 2 weeks later had little or no effect on the roots. Concurrent infection by F. oxysporum and M. arenaria resulted in less M. arenaria gall production on the tap root system than those added with the nematode alone or in advance of the fungus.  相似文献   

20.
Plant responses to abiotic stress are determined both by the severity of the stress as well as the metabolic status of the plant. Abscisic acid (ABA) is a key component in integrating these various signals and controlling downstream stress responses. By screening for plants with decreased RD29A:LUC expression, we isolated two alleles, glutamate:glyoxylate transferase1-1 (ggt1-1) and ggt1-2, of a mutant with altered ABA sensitivity. In addition to reduced ABA induction of RD29A, ggt1-1 was altered in ABA and stress regulation of Δ 1 -pyrroline-5-carboxylate synthase, proline dehydrogenase and 9-cis-epoxycarotenoid dioxygenase 3, which encode enzymes involved in Pro and ABA metabolsim, respectively. ggt1-1 also had altered ABA and Pro contents after stress or ABA treatments while root growth and leaf water loss were relatively unaffected. A light-dependent increase in H2O2 accumulation was observed in ggt1-1 consistent with the previously characterized role of GGT1 in photorespiration. Treatment with exogenous H2O2, as well as analysis of a mutant in nucleoside diphosphate kinase 2 which also had increased H2O2 content but is not involved in photorespiration or amino acid metabolism, demonstrated that the greater ABA stimulation of Pro accumulation in these mutants was caused by altered H2O2 content as opposed to other metabolic changes. The results suggest that metabolic changes that alter H2O2 levels can affect both ABA accumulation and ABA sensitivity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号