首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
An in vitro method for establishing mycorrhizae on coniferous tree seedlings   总被引:17,自引:0,他引:17  
Summary A method for in vitro synthesis of mycorrhizae on coniferous tree seedlings is described. Tree seedlings (Larix decidua Mill., Picea abies (L.) Karst, and Pinus sylvestris L.) and fungi Amanita muscaria (L. ex Fr.) Hooker, Piloderma croceum Erikss. et Hjorst., Pisolithus tinctorius (Pers.) Coker et Couch, and Suillus grevillei (Klotzsch) Singer were maintained under sterile conditions in petri dishes. Typical ectomycorrhizae were established within 2–3 weeks after inoculation and within 2 months after germination of seedlings. Eventually a high percentage of mycorrhizal root tips was obtained.  相似文献   

2.
Ectomycorrhizae formed in synthesis tubes by aspen (Populus tremuloides) seedlings and each of seven fungal isolates are described. Isolates of Amanita muscaria v. formosa, A. pantherina, Inocybe lacera, and Paxillus vernalis, from sporocarps collected in aspen stands in southwestern Montana, developed mantles and Hartig nets on aspen roots, as did the broad-hostrange fungi Cenococcum geophilum and Pisolithus tinctorius from the VPI culture collection. Chalciporus piperatus failed to form mycorrhizae, and Piloderma croceum formed a mantle, but no Hartig net. The first syntheses of I. lacera and A. pantherina with aspen are reported.  相似文献   

3.
 The first in vitro aseptic synthesis of Abies firma Sieb. et Zucc. with Pisolithus tinctorius (Pers.) Coker & Couch is reported. Techniques were improved for the aseptic synthesis of ectomycorrhizas of A. firma, a slow-growing species in vitro, and Pisolithus tinctorius using a novel culture medium and both sterilized and re-rooted seedlings. After 2–3 months incubation, ectomycorrhizas were formed by both methods. The mycorrhizas possessed a mantle and a highly branched nonseptate Hartig net mycelium colonizing the intercellular spaces within the host cortex, features characteristic of ectomycorrhizas. These techniques will prove useful for addressing physiological and biochemical questions on the interactions of microbes with roots of whole plants. Accepted: 29 June 1999  相似文献   

4.
D. Vodnik  N. Gogala 《Mycorrhiza》1994,4(6):277-281
Specimens of spruce Picea abies (L.) Karsten were inoculated with the fungi Laccaria laccata, Pisolithus tinctorius and Lactarius piperatus in a nursery at the time of sowing. The 1-year seedlings were then tested in two growth periods for their photosynthesis, chlorophyll and carotenoid levels, and water potential; their roots were examined with a scanning electron microscope. Increased photosynthetic activity was determined at the start of the growth season in only those seedlings inoculated with the fungus Laccaria laccata. The levels of chlorophyll and carotenoids measured in September in the needles of all three mycorrhized groups of plants were higher than in the controls.  相似文献   

5.
6.
Arbutoid mycorrhizae were synthesized in growth pouches between Arbutus menziesii Pursch. (Pacific madrone) and two broad host range basidiomycete fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Piloderma bicolor (Peck) Jülich. P. tinctorius induced the formation of dense, pinnate mycorrhizal root clusters enveloped by a thick fungal mantle. P. bicolor mycorrhizae were usually unbranched, and had a thin or non-existent mantle. Both associations had the well-developed para-epidermal Hartig nets and intracellular penetration of host epidermal cells by hyphae typical of arbutoid interactions. A. menziesii roots developed a suberized exodermis which acted as a barrier to cortical cell penetration by the fungi. Ultrastructurally, the suberin appeared non-lamellar, but this may have been due to the imbedding resin. Histochemical analyses indicated that phenolic substances present in epidermal cells may be an important factor in mycorrhiza establishment. Analyses with X-ray energy dispersive spectroscopy showed that some of the granular inclusions present in fungal hyphae of the mantle and Hartig net were polyphosphate. Other inclusions were either protein or polysaccharides.  相似文献   

7.
Elevated tropospheric CO2 concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance “fringe” exploration type) or Tomentellopsis submollis (medium distance “smooth” exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO2 concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO2. The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO2. This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO2 at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm−1 and 6.0 μg cm−1, respectively, across all treatments.  相似文献   

8.
Mycorrhizal Fungi Prevent Disease in Stressed Pine Seedlings   总被引:4,自引:0,他引:4  
The common rhizospheric fungus Cylindrocarpon destructans caused severe root damage leading to mortality in light-starved, stunted seedlings of Pinus sylvestris. This effect was, however, almost fully prevented by the presence of mycorrhizal fungi; i.e. Laccaria laccata, Pisolithus tinctorius, or unidentified species present in small amounts of conifer soil. Protection took place even before visible mycorrhizae were found on the roots. This is the first time that protection ofstressed plants against non-parasitic (non-invasive) pathogens has been reported. The results indicate that root protection by mycorrhizal fungi may not only be effective inside the root but probably also extends out into the rhizoplane or rhizosphere.  相似文献   

9.
31P-Nuclear Magnetic Resonance (NMR) was used to assess phosphate distribution in ectomycorrhizal and nonmycorrhizal roots of Castanea sativa Mill. as well as in the mycorrhizal fungus Pisolithus tinctorius in order to gain insight into phosphate trafficking in these systems. The fungus P. tinctorius accumulated high levels of polyphosphates during the rapid phase of growth. Mycorrhizal and nonmycorrhizal roots accumulate orthophosphate. Only mycorrhizal roots presented polyphosphates. The content in polyphosphates increased along the 3 months of mycorrhiza formation. In mycorrhizal roots of plants cultured under axenic conditions, the orthophosphate pool decreased along the culture time. In nonmycorrhizal roots the decrease in the orthophosphate content was less pronounced. The level of orthophosphate in mycorrhizal roots was significantly lower than in nonmycorrhizal ones, which indicates that this system relies upon the fungal polyphosphates as a major source of phosphate. Received: 28 July 1998 / Accepted: 21 October 1998  相似文献   

10.
Lignosulfonate (LS) is a lignin-based polymer obtained as a by-product from paper industry, which may have potential as an amendment with macronutrients. We studied effects of LS on the interaction between Scots pine (Pinus sylvestris L.) seedlings and hypocotyl cuttings and the ectomycorrhizal (ECM) fungusPisolithus tinctorius (Pers.) Coker and Couch. The experiments were performed in vitroon the MMN agar medium containing Fe–LS chelate at the concentrations of 0, 5, 10 and 25 mg/L. Inoculation with P. tinctoriusincreased root growth of the seedlings. Fe–LS enhanced P. tinctorius induced formation of lateral roots and had a dose-dependent positive effect on the establishment of mycorrhizas on the seedlings. The growth of the fungal mycelium was improved by Fe–LS, which might cause faster and more intensive contact with the roots and, thus, better root growth and mycorrhiza formation. P.tinctorius enhanced also adventitious root formation and subsequent root growth of the hypocotyl cuttings but without any synergistic effect with Fe–LS. Our study with P. tinctorius and Scots pine in vitro indicates that a low-cost by-product Fe–LS, obtained from paper industry, may be a potential tool to improve the efficiency of fungal inoculations, thus, facilitating the early interaction between an ECM fungus and host seedling.  相似文献   

11.
The effect of elevated atmospheric CO2 concentration on the growth of shoots, roots, mycorrhizas and extraradical mycorrhizal mycelia of pine (Pinus silvestris L.) was examined. Two and a half-month-old seedlings were inoculated axenically with the mycorrhizal fungus Pisolithus tincto-rius (Pers.) by a method allowing rapid mycorrhiza formation in Petri dishes. The plants were then cultivated for 3 months in growth chambers with daily concentrations of 350 and 600 μmol mol?1 CO2 during the day. Whereas plants harvested after 1 and 2 months did not differ appreciably between ambient and increased CO2 concentrations, after 3 months they developed a considerably higher root biomass (%57%) at elevated CO2, but did not increase significantly in root length. The mycorrhizal fungus Pisolithus tinctorius, which depended entirely on the plant assimilates in the model system, grew much faster at increased CO2: 3 times more mycorrhizal root clusters were formed and the extraradical mycelium produced had twice the biomass at elevated as at ambient CO2. No difference in shoot biomass was found between the two treatments after 91 d. However, since the total water consumption of seedlings was similar in the two treatments, the water use efficiency was appreciably higher for the seedlings at increased CO2 because of the higher below-ground biomass.  相似文献   

12.
In Northeast of Portugal, the macrofungal community associated to chestnut tree (Castanea sativa Mill.) is rich and diversified. Among fungal species, the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare are common in this habitat. The aim of the present work was to assess the effect of the interaction between both fungi on growth, nutritional status, and physiology of C. sativa seedlings. In pot experiments, C. sativa seedlings were inoculated with P. tinctorius and H. fasciculare individually or in combination. Inoculation with P. tinctorius stimulated the plant growth and resulted in increased foliar-N, foliar-P, and photosynthetic pigment contents. These effects were suppressed when H. fasciculare was simultaneously applied with P. tinctorius. This result could be related to the inhibition of ectomycorrhizal fungus root colonization as a result of antagonism or to the competition for nutrient sources. If chestnut seedlings have been previously inoculated with P. tinctorius, the subsequent inoculation of H. fasciculare 30 days later did not affect root colonization, and mycorrhization benefits were observed. This work confirms an antagonistic interaction between ectomycorrhizal and saprotrophic fungi with consequences on the ectomycorrhizal host physiology. Although P. tinctorius is effective in promoting growth of host trees by establishing mycorrhizae, in the presence of other fungi, it may not always be able to interact with host roots due to an inability to compete with certain fungi.  相似文献   

13.
The purpose of this study was to analyze morphological and physiological aspects of Arbutus unedo L. plants treated with paclobutrazol (PAC), compounds characterized by their double activity as plant growth regulators and fungicides, and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch, which forms a special type of mycorrhizal colonization called arbutoid mycorrhiza. Native A. unedo L. seedlings were grown in a greenhouse and subjected to four treatments for 4 months: 0 or 60 mg of PAC and inoculated or not with P. tinctorius (Pers.). The arbutoid mycorrhizal inoculation increased in plants treated with PAC. Paclobutrazol reduced shoot and root biomass, plant height, internode length, stem diameter, leaf area, total root length and number of tips. P. tinctorius increased plant height and had a beneficial effect on the root system (increasing root diameter and the number of tips). PAC treatment led to an increase in ion levels in the leaf tissue, while mycorrhizal inoculation induced lower K and higher P contents in the roots. Leaf water potentials (at predawn and at midday) increased with the combined treatment. The absence of water deficit conditions meant there was no osmotic adjustment. Higher photosynthesis (Pn) values were associated with higher stomatal conductance (gs) values in the mycorrhizal plants, which influenced water uptake from the roots. However, gs decreased in the PAC-treated plants, reducing photosynthesis and, as a consequence, growth. The higher hydraulic conductivity (Lp) in the plants treated with PAC may have induced a better water energy status and good water transport. The combined treatment produced beneficial effects in the plants, improving their water and nutritional status.  相似文献   

14.
Jack pine (Pinus banksiana Lamb.) seedlings were inoculated with either one of the ectomycorrhizal (ECM) fungi, Laccaria bicolor (Maire) Orton or Pisolithus tinctorius (Pers.) Coker and Couch, and grown for 16 weeks in a growth chamber along with non-ECM controls. Five enzymes involved with the assimilation of nitrogen or the synthesis of amino acids were measured in the 3 jack pine root systems as well as in the pure fungal cultures. Pisolithus tinctorius in pure culture had no detectable activity of nitrate reductase (NR. EC 1.6.6.1), glutamate dehydrogenase (GDH. EC 1.4.1.2), glutamate decarboxylase (GDCO. EC 4.1.1.15) or glutamate oxoglutarate aminotransferase (GOGAT, EC 1.4.1.13) but did have some glutamine synthetase (GS, EC 6.3.1.2) activity. Laccaria bicolor in pure culture had no NR activity, small levels of GDCO activity, and high GS, GDH and GOGAT activity. The high levels of enzymatic activity present in L. bicolor indicate that it may play a greater role in the nitrogen metabolism of its host plant than P. tinctorius. ECM infection clearly altered the enzymatic activity in jack pine roots but the nature of these changes depended on the fungal associate. Non-ECM root systems had higher specific activities than ECM root systems for NR, GS, GDH and GDCO but GOGAT activites were the same for both the ECM and non-ECM roots. Root systems infected with L. bicolor had significantly greater NR and GDCO activity than those infected with P. tinctorius. Differences in the GS activity of the two fungi in pure culture corresponded to the GS activity of jack pine roots in symbiotic association with these fungi. While the free amino acid profiles in roots were significantly affected by ECM infection, the profile of free amino acids exported to the stem was the same for all treatments. High asparagine and low glutamine in roots infected with P. tinctorius indicates that asparagine synthetase (EC x.x.x.x) activity should be higher within this symbiotic association than in the L. bicolor association or in the non-mycorrhizal roots.  相似文献   

15.
We used Pisolithus tinctorius and Cenococcum geophilum to determine the copper (Cu) resistance of ectomycorrhizal (ECM) fungi and their potential for improving phytoremediation of Cu-contaminated soil by Chinese red pine (Pinus tabulaeformis). The results showed that nutrient accumulation in C. geophilum mycelium was significantly lower under higher Cu concentrations in the soil, which was not observed in P. tinctorius. Meanwhile, P. tinctorius exhibited greater Cu tolerance than C. geophilum. Inoculation with ECM fungi significantly improved the growth of pine shoots planted in polluted soil in pot experiments (p < 0.01). The total accumulated Cu in pine seedlings planted in Cu-contaminated soil increased by 72.8% and 113.3% when inoculated with P. tinctorius and C. geophilum, respectively, indicating that ECM fungi may help their host to phytoextract heavy metals. Furthermore, the majority of the total absorbed metals remained in the roots, confirming the ability of ECM fungi to promote heavy metal phytostabilization. There were no differences between the effects of the two fungi in helping the host stabilize and absorb Cu, even though they have different Cu tolerances. Inoculation with ECM fungi can benefit plant establishment in polluted environments and assist plants with phytoremediating heavy-metal-contaminated soils.  相似文献   

16.
The ability of Pinus caribaea var. hondurensis to form mycorrhizae was determined in vitro with seven species of ectomycorrhizal fungi in the presence of six levels of Al (added as AlCl3) in a nutrient solution. The time required for mycorrhizal formation, the number of mycorrhizal root tips and the percent mycorrhizae were measured after 15, 30, 60, 90 and 120 days. Cenococcum graniforme was susceptible to Al toxicity at all Al concentrations. Pisolithus tinctorius and Suillus sp. were depressed at lower but stimulated at higher Al concentrations. The inverse was shown for Rhizopogon reaii and Hebeloma cylindrosporum. Tolerance to Al was verified for R. nigrescens and H. crustuliniforme. Pisolithus tinctorius had the largest mycorrhizal capacity, defined as the sum of the values for time, percent and number of mycorrhizae. Ectomycorrhizal fungi appeared to ameliorate Al damage to plant roots even in treatments where no mycorrhizae formed. Inoculation of pine seedlings with Al-tolerant mycorrhizal fungi is likely to improve reforestation efforts in highly-weathered tropical soils.  相似文献   

17.
接种菌根真菌对青冈栎幼苗耐旱性的影响   总被引:3,自引:0,他引:3  
利用丛枝菌根真菌摩西球囊霉(Glomus mosseae)、根内球囊霉(Glomus intraradices)和外生菌根真菌彩色豆马勃(Pisolithus tinctorius)对石漠化地区造林树种青冈栎(Cyclobalanopsis glauca)幼苗进行接种试验。在大棚盆栽条件下模拟土壤干旱胁迫,研究菌根真菌对青冈栎生长和耐旱性的影响。结果表明:在土壤干旱条件下,接种菌根处理植株生物量显著高于未接种处理(P0.05),菌根依赖性随土壤水分含量降低而升高;未接种处理植株叶绿素含量在土壤干旱条件下显著降低(P0.05),除接种Pisolithus tinctorius处理外,其它接种处理叶绿素含量无显著变化。土壤干旱使植株体内脯氨酸和可溶性糖含量上升,在中度干旱条件下,接种处理可溶性糖含量均显著高于对照处理,接种Glomus intraradices、Pisolithus tinctorius处理脯氨酸含量显著低于对照(P0.05);在重度干旱条件下,接种Glomus mosseae和Glomus intraradices处理可溶性糖含量显著高于对照处理(P0.05),而相应的脯氨酸含量显著低于对照处理。当土壤水分含量在田间持水量55%—65%时,接种处理植株SOD、POD和CAT酶活性显著高于未接种处理(P0.05),在土壤水分含量降至35%—45%时,Glomus mosseae和Glomus intraradices处理SOD酶活性显著高于对照,并且所有接种处理POD酶活性均显著高于对照。此外,在水分干旱条件下,植株全磷和全钾含量也显著高于未接种处理(P0.05)。研究表明,丛枝菌根真菌和外生菌根真菌均能够侵染青冈栎幼苗根系;在干旱胁迫条件下,接种菌根真菌能够提高青冈栎植株生物量、抗氧化酶活性、增加植株可溶性糖含量和促进植株养分吸收,提高植株耐旱性,从而使青冈栎幼苗在岩溶干旱环境下更容易存活。  相似文献   

18.
The inoculation ofEucalyptus pilularis seedlings withPisolithus tinctorius and the subsequent development of ectomycorrhizas, led to an improved acquisition of phosphorus (P) from three different sources of P. These sources included insoluble phytate. Dry weight gain of seedlings was increased by inoculation in those treatments where growth was limited by P supply.  相似文献   

19.
Iwański M  Rudawska M 《Mycorrhiza》2007,17(5):461-467
We investigated the species richness and composition of ectomycorrhizal (EM) fungi colonizing Pinus sylvestris L. seedlings naturally regenerating in boreal forest, in three different microhabitats: on forest ground, on decaying stumps, and within moss layer on erratic boulders. We tested the hypothesis that habitat differences would affect the composition of the EM community of regenerating pine seedlings. In total, 16 EM species were detected, from which none occurred on seedlings growing in all three microhabitats. Piloderma croceum and Cenococcum geophilum were common for seedlings growing in forest ground and on boulders, while Tricholoma aestuans and Suillus luteus were shared between seedlings growing on forest ground and decaying stumps. EM species richness and composition were strikingly different between seedlings regenerating in different microhabitats. Results are discussed as a function of dispersal and niche differentiation of EM fungi.  相似文献   

20.
Eucalyptus camaldulensis Dehnh. seedlings inoculated with Pisolithus tinctorius (Pers.) Coker & Couch and Thelephora terrestris Ehrl. per Fr. were grown in well watered soil (s –0.03 MPa) or subjected to a long-term soil water stress of up to –1.0 MPa over 13-week period in a glasshouse. After 13 weeks, all seedling containers were watered to field capacity and then water was withheld from the E. camaldulensis seedlings to induce a short-term drought. Diurnal measurements of seedling photosynthesis rate (A), leaf stomatal conductance (g) and leaf water potential (p) were completed before, during, and after the short term drought. Although they were growing in an equal soil volume, photosynthesis rate (A), leaf stomatal conductance and leaf water potential (p) of larger seedlings with P. tinctorius ectomycorrhizae were similar to those of smaller seedlings colonized with T. terrestris during the short-term drought period. Seedlings inoculated with Pisolithus tinctorius maintained higher photosynthesis rates over the course of the short-term drought. Thus, P. tinctorius ectomycorrhizae appear to be more efficient than those of T. terrestris in assisting seedlings to maintain gas exchange and photosynthesis under limited soil moisture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号