首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studying the structure and regulation of soluble guanylyl cyclase   总被引:4,自引:0,他引:4  
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase.  相似文献   

2.
Adenosine 3′, 5′-cyclic monophosphate (cAMP) and guanosine 3′, 5′-cyclic monophosphate (cGMP) are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans). cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example, mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS) on cyclic nucleotide metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays. Here, we show that the relation between cGMP and survival is more complex than previously appreciated.  相似文献   

3.
D Koesling  E B?hme  G Schultz 《FASEB journal》1991,5(13):2785-2791
Guanylyl cyclases, which catalyze the formation of the intracellular signal molecule cyclic GMP from GTP, display structural features similar to other signal-transducing enzymes such as protein tyrosine-kinases and protein tyrosine-phosphatases. So far, three isoforms of mammalian membrane-bound guanylyl cyclases (GC-A, GC-B, GC-C), which are stimulated by either natriuretic peptides (GC-A, GC-B) or by the enterotoxin of Escherichia coli (GC-C), have been identified. These proteins belong to the group of receptor-linked enzymes, with different NH2-terminal extracellular receptor domains coupled to a common intracellular catalytic domain. In contrast to the membrane-bound enzymes, the heme-containing soluble guanylyl cyclase is stimulated by NO and NO-containing compounds and consists of two subunits (alpha 1 and beta 1). Both subunits contain the putative catalytic domain, which is conserved in the membrane-bound guanylyl cyclases and is found twice in adenylyl cyclases. Coexpression of the alpha 1- and beta 1-subunit is required to yield a catalytically active enzyme. Recently, another subunit of soluble guanylyl cyclase was identified and designated beta 2, revealing heterogeneity among the subunits of soluble guanylyl cyclase. Thus, different enzyme subunits may be expressed in a tissue-specific manner, leading to the assembly of various heterodimeric enzyme forms. The implications concerning the physiological regulation of soluble guanylyl cyclase are not known, but different mechanisms of soluble enzyme activation may be due to heterogeneity among the subunits of soluble guanylyl cyclase.  相似文献   

4.
Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin‐mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin‐signaling pathway. The molecular determinants of the insulin‐signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals—yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin‐mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin's unique role in specific reproductive processes.  相似文献   

5.
Guanylyl cyclases in eukaryotic unicells were biochemically investigated in the ciliates Paramecium and Tetrahymena, in the malaria parasite Plasmodium and in the ameboid Dictyostelium. In ciliates guanylyl cyclase activity is calcium-regulated suggesting a structural kinship to similarly regulated membrane-bound guanylyl cyclases in vertebrates. Yet, cloning of ciliate guanylyl cyclases revealed a novel combination of known modular building blocks. Two cyclase homology domains are inversely arranged in a topology of mammalian adenylyl cyclases, containing two cassettes of six transmembrane spans. In addition the protozoan guanylyl cyclases contain an N-terminal P-type ATPase-like domain. Sequence comparisons indicate a compromised ATPase function. The adopted novel function remains enigmatic to date. The topology of the guanylyl cyclase domain in all protozoans investigated is identical. A recently identified Dictyostelium guanylyl cyclase lacks the N-terminal P-type ATPase domain. The close functional relation of Paramecium guanylyl cyclases to mammalian adenylyl cyclases has been established by heterologous expression, respective point mutations and a series of active mammalian adenylyl cyclase/Paramecium guanylyl cyclase chimeras. The unique structure of protozoan guanylyl cyclases suggests that unexpectedly they do not share a common guanylyl cyclase ancestor with their vertebrate congeners but probably originated from an ancestral mammalian-type adenylyl cyclase.  相似文献   

6.
Two classes of guanylyl cyclases (GC) form intracellular cGMP. One is a receptor for atrial natriuretic peptide (ANP) and the other for nitric oxide (NO). The ANP receptor guanylyl cyclase (GC-A) is a membrane-bound, single subunit protein. Nitric oxide activated or soluble guanylyl cyclases (NOGC) are heme-containing heterodimers. These have been shown to be important in cGMP mediated regulation of arterial vascular resistance and renal sodium transport. Recent studies have shown that cGMP produced by both GCs is compartmentalized in the heart and vascular smooth muscle cells. To date, however, how intracellular cGMP generated by ANP and NO is compartmentalized and how it triggers specific downstream targets in kidney cells has not been investigated. Our studies show that intracellular cGMP formed by NO is targeted to cytosolic and cytoskeletal compartments whereas cGMP formed by ANP is restricted to nuclear and membrane compartments. We used two dimensional difference in gel electrophoresis and MALDI-TOF/TOF to identify distinct sub-cellular targets that are specific to ANP and NO signaling in HK-2 cells. A nucleocytoplasmic shuttling protein, heterogeneous nuclear ribonucleo protein A1 (hnRNP A1) is preferentially phosphorylated by ANP/cGMP/cGK signaling. ANP stimulation of HK-2 cells leads to increased cGK activity in the nucleus and translocation of cGK and hnRNP A1 to the nucleus. Phosphodiestaerase-5 (PDE-5 inhibitor) sildenafil augmented ANP-mediated effects on hnRNPA1 phosphorylation, translocation to nucleus and nuclear cGK activity. Our results suggest that cGMP generated by ANP and SNAP is differentially compartmentalized, localized but not global changes in cGMP, perhaps at different sub-cellular fractions of the cell, may more closely correlate with their effects by preferential phosphorylation of cellular targets.  相似文献   

7.
8.
The genome sequences of Caenorhabditis elegans and Drosophila melanogaster reveal a diversity of cysteine-loop ligand-gated ion channels (Cys-loop LGICs) not found in vertebrates. To better understand the evolution of this gene superfamily, I compared all Cys-loop LGICs from rat, the primitive chordate Ciona intestinalis, Drosophila, and C. elegans. There are two clades of GABA receptor subunits that include both verterbate and invertebrate orthologues. In addition, I identified nine clades of anion channel subunits found only in invertebrates, including three that are specific to C. elegans and two found only in Drosophila. One well-defined clade of vertebrate cation channel subunits, the α7 nicotinic acetylcholine receptor subunits (nAChR), includes invertebrate orthologues. There are two clades of invertebrate nAChRs, one of α-type subunits and one of non-α subunits, that are most similar to the two clades of vertebrate neuronal and muscle α and non-α subunits. There is a large group of divergent C. elegans nAChR-like subunits partially resolved into clades but no orthologues of 5HT3-type serotonin receptors in the invertebrates. The topology of the trees suggests that most of the invertebrate-specific Cys-loop LGIC clades were present in the common ancestor of chordates and ecdysozoa. Many of these disappeared from the chordates. Subsequently, selected subunit genes expanded to form large subfamilies. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

9.
10.
Nitric oxide synthase recently has been shown to be present in olfactory receptor cells throughout development of the adult antennal (olfactory) lobe of the brain of the moth Manduca sexta. Here, we investigate the possible involvement of nitric oxide (NO) in antennal-lobe morphogenesis. Inhibition of NO signaling with a NO synthase inhibitor or a NO scavenger early in development results in abnormal antennal lobes in which neuropil-associated glia fail to migrate. A more subtle effect is seen in the arborization of dendrites of a serotonin-immunoreactive neuron, which grow beyond their normal range. The effects of NO signaling in these types of cells do not appear to be mediated by activation of soluble guanylyl cyclase to produce cGMP, as these cells do not exhibit cGMP immunoreactivity following NO stimulation and are not affected by infusion of a soluble guanylyl cyclase inhibitor. Treatment with Novobiocin, which blocks ADP-ribosylation of proteins, results in a phenotype similar to those seen with blockade of NO signaling. Thus, axons of olfactory receptor cells appear to trigger glial cell migration and limit arborization of serotonin-immunoreactive neurons via NO signaling. The NO effect may be mediated in part by ADP-ribosylation of target cell proteins.  相似文献   

11.
Dominant negative mutants are unique tools to define functions of a protein, not only within complex cellular and organismal contexts, but also mechanistically within a protein. Guanylyl cyclases are amenable to studies with dominant negative mutants, with their own sets of opportunities for insight and pitfalls to overcome. Membrane and soluble forms of guanylyl cyclase represent self-contained signal transduction modules that recognize, transduce, and amplify an external signal to give a carefully controlled response. Beginning with recognition of peptide hormones versus nitric oxide, membrane and soluble guanylyl cyclases are considerably different, except that their catalytic domains are closely related. Studies on these catalytic domains and their counterparts in adenylyl cyclases have raised an integral question of whether one or two domains form a catalytic site, which remains unresolved. Regardless of which model is correct, guanylyl cyclases appear to require an oligomeric state to function properly. The inferred relationship between protein-protein interaction and function is the basis for developing dominant negative mutants, which can be designed without prior structural information. Soluble guanylyl cyclases exist in a heterodimeric state, whereas membrane guanylyl cyclases are homodimeric, or possibly higher-order oligomers. These properties dictate that dominant negative mutants of membrane and soluble guanylyl cyclases be approached in fundamentally different ways, with regard to their design, their functional consequences, and their limitations. Using dominant negative mutants as specific inhibitors in complex systems, such as transgenic animals, represents a significant advance, and continuing improvements are just an inkling of the extraordinary potential of this approach. For example, the function of a protein can be obscured because it is expressed in multiple cell types; by restricting its pattern of expression, a cell-specific promoter, coupled to a dominant negative mutant, can pinpoint this function. As more sophisticated methods are developed, dominant negative mutants will provide additional opportunities to unveil new regulatory mechanisms, new signaling pathways, or even new therapeutic approaches.  相似文献   

12.
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron.  相似文献   

13.
14.
The intracellular messenger cGMP has been suggested to play a role in taste signal transduction in both vertebrates and invertebrates. In the present study, we have examined the role of the Drosophila atypical soluble guanylyl cyclases (sGCs), Gyc-89Da and Gyc-89Db, in larval and adult gustatory preference behaviors. We showed that in larvae, sucrose attraction requires Gyc-89Db and caffeine avoidance requires Gyc-89Da. In adult flies, sucrose attraction is unaffected by mutations in either gene whereas avoidance of low concentrations of caffeine is eliminated by loss of either gene. Similar defective behaviors were observed when cGMP increases were prevented by the expression of a cGMP-specific phosphodiesterase. We also showed that both genes were expressed in gustatory receptor neurons (GRNs) in larval and adult gustatory organs, primarily in a non-overlapping pattern, with the exception of a small group of cells in the adult labellum. In addition, in adults, several cells co-expressed the bitter taste receptor, Gr66a, with either Gyc-89Da or Gyc-89Db. We also showed that the electrophysiological responses of a GRN to caffeine were significantly reduced in flies mutant for the atypical sGCs, suggesting that at least part of the adult behavioral defects were due to a reduced ability to detect caffeine.  相似文献   

15.
Conventional soluble guanylyl cyclases are heterodimeric enzymes that synthesize cGMP and are activated by nitric oxide. Recently, a separate class of soluble guanylyl cyclases has been identified that are only slightly activated by or are insensitive to nitric oxide. These atypical guanylyl cyclases include the vertebrate beta2 subunit and examples from the invertebrates Manduca sexta, Caenorhabditis elegans, and Drosophila melanogaster. A member of this family, GCY-35 in C. elegans, was recently shown to be required for a behavioral response to low oxygen levels and may be directly regulated by oxygen (Gray, J. M., Karow, D. S., Lu, H., Chang, A. J., Chang, J. S., Ellis, R. E., Marletta, M. A., and Bargmann, C. I. (2004) Nature 430, 317-322). Drosophila contains three genes that code for atypical soluble guanylyl cyclases: Gyc-88E, Gyc-89Da, and Gyc-89Db. COS-7 cells co-transfected with Gyc-88E and Gyc-89Da or Gyc-89Db accumulate low levels of cGMP under normal atmospheric oxygen concentrations and are potently activated under anoxic conditions. The increase in activity is graded over oxygen concentrations of 0-21%, can be detected within 1 min of exposure to anoxic conditions and is blocked by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Gyc-88E and Gyc-89Db are co-expressed in a subset of sensory neurons where they would be ideally situated to act as oxygen sensors. This is the first demonstration of a soluble guanylyl cyclase that is activated in response to changing oxygen concentrations.  相似文献   

16.
Cyclic guanosine monophosphate (cGMP) is an important secondary messenger synthesized by the guanylyl cyclases which are found in the soluble (sGC) and particular isoforms. In the central nervous system, the nitric oxide (NO)-sensitive sGC isoform is the major enzyme responsible for cGMP synthesis. Phosphodiesterases (PDEs) are enzymes for hydrolysis of cGMP in the brain, and they are mainly isoforms 2, 5, and 9. The NO/cGMP signaling pathway has been shown to play an important role in the process underlying learning and memory. Aging is associated with an increase in PDE expression and activity and a decrease in cGMP concentration. In addition, aging is also associated with an enhancement of neuronal NO synthase, a lowering of endothelial, and no alteration in inducible activity. The observed changes in NMDA receptor density along with the Ca2+/NO/cGMP pathway underscore the lower synaptic plasticity and cognitive performance during aging. This notion is in agreement with last data indicating that inhibitors of PDE2 and PDE9 improve learning and memory in older rats. In this review, we focus on recent studies supporting the role of Ca2+/NO/cGMP pathway in aging and Alzheimer's disease.  相似文献   

17.
Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of ∼70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand- and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.In transmembrane receptors a series of conformational changes are required to transmit the information of ligand binding (an extracellular signal) to the interior of the cell, resulting in either altered interaction with signaling intermediates or in the regulation of a catalytic activity present in the receptor. In these multidomain receptors, where the ligand binding and effector domains are present in the same polypeptide chain, the relay of conformational changes is under the exquisite control of post-translational modifications or precise structural alterations.Receptor guanylyl cyclases (GCs)4 have an N-terminal extracellular ligand binding domain, a single transmembrane domain, and a C-terminal intracellular domain (1). Binding of ligands to the extracellular domain elicits a conformational change that increases the guanylyl cyclase activity of the receptor, resulting in increased cGMP production. The intracellular domain of receptor GCs contains a region that shares considerable sequence similarity to protein kinases and is referred to as the kinase homology domain (KHD). Binding of ATP to the KHD induces a conformational change that regulates cGMP production by the guanylyl cyclase domain (2). Thus, receptor GCs exemplify the intricate interactions between domains in transducing the signal from an extracellular ligand to the interior of the cell.The amino acid sequences of the extracellular domain of mammalian receptor GCs vary (less than ∼15% similarity), as would be expected given the diversity in the ligands that bind to and activate these receptors. The KHD shows ∼25–30% conservation in amino acid sequence across receptor GCs, and computational modeling has not only suggested that this region could adopt the overall structure of a protein kinase but also identified specific residues that could interact with ATP (2, 3). The catalytic domains of mammalian receptor GCs are more conserved (∼80% sequence similarity). The gradual increase in sequence similarity across the various domains, with the extracellular domain being the most diverse and the cyclase domains sharing the maximum sequence similarity, is a reflection of the ability of these receptor GCs to converge diverse extracellular signals to a unified output of cGMP production. The guanylyl cyclase domains of receptor GCs can be classified as members of the Class III family of nucleotide cyclases (4). The recent crystal structures of a bacterial guanylyl cyclase (5) and a eukaryotic soluble guanylyl cyclase (6) show similarities in the overall three-dimensional structure of adenylyl and guanylyl cyclases and also highlight the critical residues that determine substrate utilization (either ATP or GTP) in these enzymes.Guanylyl cyclase C (GC-C) serves as the receptor for the guanylin family of endogenous peptides as well as for the exogenous heat-stable enterotoxin (ST) peptides secreted by enterotoxigenic bacteria (7, 8). GC-C is predominantly expressed on the apical surface of epithelial cells in the intestine, although robust extra-intestinal expression is observed in the kidney and reproductive tissues of the rat (912). The extracellular domain of GC-C is glycosylated, and we have shown the importance of glycosylation in regulating receptor desensitization in colonic cells. We have also identified a critical residue (Lys-516) in the KHD of GC-C as being important for KHD-mediated modulation of the guanylyl cyclase activity (2, 3).A sequence of ∼70 amino acids is found between the KHD and the guanylyl cyclase domain of receptor GCs, which we refer to here as the linker region (13). This region is predicted to form an amphipathic α-helix and could also adopt a coiled coil conformation (14, 15). The linker region is also present in soluble (cytosolic) guanylyl cyclases where it connects the N-terminal heme binding regulatory domain to the C-terminal catalytic cyclase domain. The linker region is suggested to act as a dimerization module in receptor GCs (1618) and has also been implicated in heterodimerization of the α and β subunits of soluble guanylyl cyclases (19, 20). However, there are several reports to the contrary that indicate that the linker does not affect the dimerization of receptor GCs (14, 15). Nevertheless, the critical importance of the linker in regulating the activity of receptor GCs is shown by the fact that mutations in this region of the retinal guanylyl cyclase (RetGC-1) are associated with autosomal dominant cone-rod dystrophy in humans (16, 21). We show here through extensive mutational and biochemical analysis that the linker regions in two receptor GCs, GC-C and guanylyl cyclase A (GC-A), play an important role in repressing the catalytic activity of the receptors in the absence of their ligands. In addition, our results provide for the first time a molecular explanation for detergent-enhanced guanylyl cyclase activity in this family of receptors and suggest a mechanism for this activation that could involve a hydrophobic interaction between the linker region and the guanylyl cyclase domain.  相似文献   

18.
Nitric oxide (NO) diffuses as short‐lived messenger through the plasma membrane and serves, among many other functions, as an activator of the cGMP synthesizing enzyme soluble guanylyl cyclase (sGC). In view of recent genetic investigations that postulated a retrograde signal from the larval muscle fibers to the presynaptic terminals, we looked for the presence of an NO/cGMP signaling system at the neuromuscular junction (NMJ) of Drosophila melanogaster larvae. Application of NO donors induced cGMP immunoreactivity in the presynaptic terminals but not the postsynaptic muscle fibers at an identified NMJ. The NO‐induced cGMP immunoreactivity was sensitive to a specific inhibitor (ODQ) of the sGC. Since presynaptic terminals which were surgically isolated from the central nervous system are capable of synthesizing cGMP, we suggest that an NO‐sensitive guanylyl cyclase is present in the terminal arborizations. Using a fluorescent dye that is known to stain recycling synaptic vesicles, we demonstrate that NO donors and membrane permeant cGMP analogues cause vesicle release at the NMJ. Moreover, the NO‐induced release could be blocked by the specific inhibitor of the sGC. A destaining of synaptic terminals after NO exposure in Ca2+‐free solution in the presence of cobalt chloride as a channel blocker suggested that NO stimulates Ca2+‐independent vesicle release at the NMJ. The combined immunocytochemical and exocytosis imaging experiments imply the involvement of cGMP and NO in the regulation of vesicle release at the NMJ of Drosophila larvae. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 337–346, 1999  相似文献   

19.
Neuronal communication involves the fusion of neurotransmitter filled synaptic vesicles with the presynaptic terminal. This exocytotic event depends upon proteins present in three separate compartments: the synaptic vesicle, the synaptic cytosol, and the presynaptic membrane. Recent data indicate that the basic components of exocytotic pathways, including those used for neurotransmitter release, are conserved from yeast to human. Genetic dissection of the secretory pathway in yeast, identification of the target proteins cleaved by the clostridial neurotoxins and biochemical characterization of the interactions of synaptic proteins from vertebrates have converged to provide the SNARE (soluble NSF attachment protein receptor) hypothesis for vesicle trafficking. This model proposes that proteins present in the vesicle (v-SNAREs) interact with membrane receptors (t-SNAREs) to provide a molecular scaffold for cytosolic proteins involved in fusion. The hypothesis that these mechanisms function at the synapse relies largely uponin vitro evidence. Recently, genetic approaches in mice, C.elegans and the fruitfly,Drosophila melanagaster, have been used to dissect thein vivo function of numerous proteins involved in synaptic transmission. This review covers recent progress and insights provided by a genetic dissection of neurotransmitter release inDrosophila. In addition, we will provide evidence that the mechanisms for synaptic communication are highly conserved from invertebrates to vertebrates, makingDrosophila an ideal model system to further unravel the intricacies of synaptic transmission.  相似文献   

20.
The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号