首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic and clinical mosaicism in a patient with neurofibromatosis type 1   总被引:2,自引:0,他引:2  
Patients with typical features of neurofibromatosis type 1 (NF1) limited to a specific body segment are usually referred to as having segmental NF1, which is generally assumed to be the result of somatic mosaicism for a NF1 mutation. Mosaicism has also been demonstrated at the molecular level in some sporadic cases with phenotypically classic NF1. In the present report, we describe a patient with NF1 disease manifestations throughout the whole body, but leaving a few sharply delineated segments of the skin unaffected, suggestive of revertant mosaicism. A large intragenic deletion was found by mutation analysis using long-range RT-PCR. The intra-exonic breakpoints were characterized in exon 13 and exon 28, resulting in a deletion of 99,571 bp at the genomic level. The presence of two genetically distinct cell populations, confirming mosaicism for this NF1 mutation, was shown by analysis of several tissues. Revertant mosaicism was excluded by demonstrating heterozygosity for markers residing in the deletion region. The findings in this patient demonstrate two things: (1) although the entire body is affected, mosaicism can still be suspected at clinical examination and proven by DNA analysis and skin biopsies; (2) long-range RT-PCR is a feasible method for demonstrating large intragenic deletions in NF1.  相似文献   

2.
We report a young child with a large congenital cervical plexiform neurofibroma and multiple café-au-lait spots in a generalized distribution who has mosaicism for complete deletion of the NF1 gene. The deletion was demonstrated with intragenic cosmid probes as well as YACs spanning a 700-kb contig including NF1, by two-color FISH with an NF1 and a control probe. Using different intragenic probes, deletion was found in 77–84% of cultured peripheral blood lymphocytes but not in cultured skin fibroblasts. Neither parent has signs of neurofibromatosis type 1 (NF1) or a gene deletion. This is the first report of mosaicism for complete deletion of the NF1 gene. The child did not have typical NF1 or display segmental features of NF1. Received: 6 June 1996 / Revised: 2 October 1996  相似文献   

3.
Neurofibromatosis type 2 (NF2) is an autosomal dominant cancer syndrome that predisposes to the development of bilateral vestibular schwannomas sometimes associated with schwannomas at other locations, meningiomas, ependymomas and juvenile posterior subcapsular lenticular opacities. This disease is caused by inactivating mutations in the NF2 tumour-suppressor gene, located in 22q12. Recently, somatic mosaicism has been demonstrated in some "de novo" NF2 patients. We here report the genetic study of 33 NF2 patients from 33 unrelated Italian families. Twelve mutations were characterised, including seven newly identified mutations and five recurrent ones. Furthermore, we describe one patient with an inactivating mutation that lies in exon 13 but that is present in only a portion of the lymphocytes and, more importantly, a clinically normal individual carrying a somatic/germinal mosaicism for a nonsense mutation in exon 10 of the NF2 gene. Our results confirm the relatively high percentage of mosaicism for mutations in the NF2 gene and establish the importance of evaluating genomic DNA from several tissues, in addition to lymphocytes, so as to identify mosaicism in "de novo" NF2 patients and their relatives. In addition, the demonstration of somatic and/or gonadal mosaicism is an important tool for accurate genetic counselling in families with sporadic cases of NF2.  相似文献   

4.
An interstitial deletion, 17cen----q11.2 (or q12), and a small extra chromosome was found in a sporadic case of von Recklinghausen neurofibromatosis (NF1). In situ hybridization with a chromosome 17-specific alpha-satellite probe showed that the small chromosome was derived from the deleted region, most likely by an excision/ring formation. This chromosome rearrangement is in agreement with the localization of the von Recklinghausen neurofibromatosis (NF1) locus to the proximal region of 17q, but with a more distal breakpoint than observed in two previously described reciprocal translocations associated with NF1. If the NF1 gene has been truncated by the present rearrangement, it may suggest that the NF1 gene is a very large gene at the genomic level. Alternatively, NF1 in this patient may be caused by the gradual loss in somatic cells of the small chromosome carrying an intact NF1 gene, thereby suggesting a recessive mechanism at the gene level. Finally, an intact NF1 gene may have been placed in close proximity with alpha-satellite sequences, which might cause inactivation of the gene. The small supernumerary chromosome may not only facilitate the cloning of the NF1 gene itself, but also offers explanations of the mechanism underlying development of the disease.  相似文献   

5.
Neurofibromas, benign tumors that originate from the peripheral nerve sheath, are a hallmark of neurofibromatosis type 1 (NF1). Although loss of heterozygosity (LOH) is a common phenomenon in this neoplasia, it only accounts for part of the somatic NF1 mutations found. Somatic point mutations or the presence of "two hits" in the NF1 gene have only been reported for a few neurofibromas. The large size of the NF1 gene together with the multicellular composition of these tumors has greatly hampered their molecular characterization. Here, we present the somatic NF1 mutational analysis of the whole set of neurofibromas studied by our group and consisting in 126 tumors derived from 32 NF1 patients. We report the identification of 45 independent somatic NF1 mutations, 20 of which are reported for the first time. Different types of point mutations together with LOH affecting the NF1 gene and its surrounding region or extending along the 17q arm have been found. Among point mutations, those affecting the correct splicing of the NF1 gene are common, coinciding with results reported on germline NF1 mutations. In most cases, we have been able to confirm that both copies of the NF1 gene are inactivated. We have also found that both somatic and germline mutations can be expressed at the RNA level in the neoplastic cells. Furthermore, we have observed that the study of more than one tumor derived from the same patient is useful for the identification of the germline mutation. Finally, we have noticed that the culture of neurofibromas and their fibroblast clearance facilitates LOH detection in cases in which it is difficult to determine.  相似文献   

6.
Physical mapping distal to the DMD locus   总被引:3,自引:0,他引:3  
We report a new locus, designated JC-1, which maps between the gene responsible for adrenal hypoplasia (AHC) and the gene that encodes glycerol kinase (GK) in Xp21.2-21.3. The probe identifying this locus was obtained by cloning the distal sequence of a junction fragment from a Duchenne muscular dystrophy (DMD) patient with a large deletion. Pulsed-field gel electrophoresis analysis shows that a region of at least 4 Mb separates the 3' end of the dystrophin gene and the closest distal marker to AHC, DXS28. This region of the human genome contains few genes whose deletion results in a clinical phenotype. JC-1 is a useful probe from which to initiate strategies directed at cloning the AHC and GK loci.  相似文献   

7.
Most patients with neurofibromatosis (NF1) are endowed with heterozygous mutations in the NF1 gene. Approximately 5% show an interstitial deletion of chromosome 17q11.2 (including NF1) and in most cases also a more severe phenotype. Here we report on a 7-year-old girl with classical NF1 signs, and in addition mild overgrowth (97th percentile), relatively low OFC (10th-25th percentile), facial dysmorphy, hoarse voice, and developmental delay. FISH analysis revealed a 17q11.2 microdeletion as well as an unbalanced 7p;13q translocation leading to trisomy of the 7q36.3 subtelomeric region. The patient's mother and grandmother who were phenotypically normal carried the same unbalanced translocation. The 17q11.2 microdeletion had arisen de novo. Array comparative genomic hybridization (CGH) demonstrated gain of a 550-kb segment from 7qter and loss of 2.5 Mb from 17q11.2 (an atypical NF1 microdeletion). We conclude that the patient's phenotype is caused by the atypical NF1 deletion, whereas 7q36.3 trisomy represents a subtelomeric copy number variation without phenotypic consequences. To our knowledge this is the first report that a duplication of the subtelomeric region of chromosome 7q containing functional genes (FAM62B, WDR60, and VIPR2) can be tolerated without phenotypic consequences. The 17q11.2 microdeletion (containing nine more genes than the common NF1 microdeletions) and the 7qter duplication were not accompanied by unexpected clinical features. Most likely the 7qter trisomy and the 17q11.2 microdeletion coincide by chance in our patient.  相似文献   

8.
We report on a rare patient screened as a putative carrier of a contiguous gene syndrome on the basis of a complex phenotype characterized by sporadic neurofibromatosis type 1 (NF1), dysmorphism, mental retardation and severe skeletal anomalies. A cytogenetically visible 17q11.2 deletion was detected in the patient’s karyotype by high-resolution banding and confirmed by fluorescence in situ hybridization with yeast artificial chromosomes targeting the NF1 region. Analysis of the segregation from parents to proband of 13 polymorphic DNA markers, either contiguous or contained within the NF1 gene, showed that the patient is hemizygous at sites within the NF1 gene – the AAAT-Alu repeat in the 5′ region of intron 27b, the CA/GT microsatellite in the 3′ region of intron 27b, and the CA/GT microsatellite in intron 38 – and at the extragenic D17S798 locus, distal to the 3′ end of NF1. The patient may be an important resource in the identification of genes downstream of NF1 that may contribute to some of his extra-NF1 clinical signs. Received: 8 May 1996 / Revised: 17 June 1996  相似文献   

9.
Deletions in 17q11.2 affecting the NF1 gene and surrounding regions occur in 5% of patients with NF1. The two major types of NF1 deletions encompass 1.4-Mb and 1.2-Mb, respectively, and have breakpoints in the NF1 low-copy repeats or in the JJAZ gene and its pseudogene. Deletions larger than 1.4-Mb are rare, and only seven cases have been reported so far. Here, we describe a 26-year-old NF1 patient with an atypical NF1 deletion of 2-Mb. In contrast to the 1.4-Mb deletions, which preferentially occur by interchromosomal recombination during maternal meiosis, the deletion described here occurred intrachromosomally on the paternal chromosome. The centromeric deletion breakpoint lies in an L1-element located 1.3-Mb proximal to the NF1 gene. The telomeric deletion boundary is located in a single copy segment between an AT-rich segment and an AluSx-element in intron 15 of the JJAZ1 gene. Structural analysis implies that non-B DNA conformations at the breakpoints destabilized the duplex DNA and caused double-strand breaks. Although the breakpoints of this 2-Mb deletion are not recurrent, it is conspicuous that one breakpoint is located in the JJAZ1 gene. Paralogous recombination between the JJAZ1 gene and its pseudogene causes the recurrent 1.2 Mb deletions. The genomic architecture of the NF1 gene region, influenced by paralogous sequences such as the JJAZ1 gene and its pseudogene, seems also to stimulate the occurrence of non-recurrent deletions mediated by non-homologous end joining. Patient 442 described here suffers from a very high burden of subdermal neurofibromas. Magnetic resonance imaging of the whole body revealed numerous internal tumors, mainly plexiform neurofibromas and spinal tumors. This demonstrates the value of whole-body MRI scanning in determining the total tumor load, which is an important aspect in genotype/phenotype correlations with regard to large NF1 deletions.  相似文献   

10.
M F Heschl  D L Baillie 《Génome》1989,32(2):190-195
While characterizing the hsp70 gene family from Caenorhabditis elegans we encountered an unusual member of this family. Sequence data reveal that the hsp-2ps gene is a pseudogene of the constitutively expressed, heat-inducible hsp-1 gene. Two stop codons generated near the 5' end of the sequence as well as several frameshift mutations and a large internal deletion confirm the identification of hsp-2ps as a pseudogene. The nucleotide substitution rate of the third codon position was twice that of the first and second codon positions, suggesting that the hsp-2ps gene was nonfunctional since the time of the duplication event. The hsp-2ps gene duplicates a region of the hsp-1 gene that lies exclusively within the transcribed region and retains the introns. We feel that the hsp-2ps gene was produced by a transpositional duplication event, which occurred approximately 8.5 million years ago.  相似文献   

11.
We report the molecular characterization of a Japanese Duchenne muscular dystrophy (DMD) patient. The analysis of genomic gene by polymerase chain reaction indicates that the individuals have a limited deletion within an amplified region, which encompasses exon 19 of DMD gene. The amplified region was sequenced. Comparison of the deletion joint sequence with the normal amplified region sequence indicates that both 5' and 3' deletion end points are present within exon 19 and the deletion removes total 52 bp out of 88 bp of exon 19. Both his mother and sister are carriers of the deletion-containing allele. The mutation introduces a termination codon at residue 791 in exon 20, and is predicted to result in the production of a severely truncated protein. This sort of deletion (designated as DMD-Kobe) might be classified as a new type of DMD gene abnormality.  相似文献   

12.
13.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by marked variation in clinical severity. To investigate the contribution to variability by genes either contiguous to or contained within the NF1 gene, we screened six NF1 patients with mild facial dysmorphology, mental retardation, and/or learning disabilities, for DNA rearrangement of the NF1 region. Five of the six patients had NF1 gene deletions on the basis of quantitative densitometry, locus hemizygosity, and analysis of somatic cell hybrid lines. Analyses of hybrid lines carrying each of the patient's chromosomes 17, with 15 regional DNA markers, demonstrated that each of the five patients carried a deletion > 700 kb in size. Minimally, each of the deletions involved the entire 350-kb NF1 gene; the three genes--EVI2A, EVI2B, and OMG--that are contained within an NF1 intron; and considerable flanking DNA. For four of the patients, the deletions mapped to the same interval; the deletion in the fifth patient was larger, extending farther in both directions. The remaining NF1 allele presumably produced functional neurofibromin; no gene rearrangements were detected, and RNA-PCR demonstrated that it was transcribed. These data provide compelling evidence that the NF1 disorder results from haploid insufficiency of neurofibromin. Of the three documented de novo deletion cases, two involved the paternal NF1 allele and one the maternal allele. The parental origin of the single remaining expressed NF1 allele had no dramatic effect on patient phenotype. The deletion patients exhibited a variable number of physical anomalies that were not correlated with the extent of their deletion. All five patients with deletions were remarkable for exhibiting a large number of neurofibromas for their age, suggesting that deletion of an unknown gene in the NF1 region may affect tumor initiation or development.  相似文献   

14.
Many genes are known to have nuclease-sensitive sites and/or control sequences in their 3' flanking regions, but for very few genes has this region been sequenced. Previously, we mapped specific, gene activity-dependent DNAase I- and MspI-sensitive sites at the 3' end of the human X-linked housekeeping gene phosphoglycerate kinase (PGK1). Sequence information presented here shows that the 3' nuclease-sensitive site maps precisely to an Alu sequence and near a "BKM" repeat. This is the first report of an Alu sequence that has alternative chromatin configurations depending on gene activity.  相似文献   

15.
Structure of the RESA gene of Plasmodium falciparum.   总被引:31,自引:3,他引:28       下载免费PDF全文
We have determined the nucleotide sequence of the gene encoding the ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum, an antigen that has been shown to confer protective immunity on monkeys. The sequence has enabled us to predict the structure of the RESA gene and the amino acid sequence of its protein product. The gene consists of two exons with a short intron located near the 5' end of the coding region. A hydrophobic amino acid segment predicted for the 3' end of exon 1 is consistent with the possibility that exon 1 encodes trafficking signal sequences. We show that restriction fragment length polymorphisms can be used to define two different alleles of RESA, represented by isolates FC27 and NF7, and compare the FC27 sequence with that of a long cDNA clone from NF7 described previously.  相似文献   

16.
Branchio-oto-renal (BOR) syndrome is an autosomal dominant disorder involving hearing loss, branchial defects, ear pits and renal abnormalities. Oto-facio-cervical (OFC) syndrome is clinically similar to BOR syndrome, with clinical features in addition to those of BOR syndrome. Mutations in the EYA1 gene (localised to 8q13.3) account for nearly 70% of BOR syndrome cases exhibiting at least three of the major features. Small intragenic deletions of the 3' region of the gene have also been reported in patients with BOR syndrome. We have developed a fluorescent quantitative multiplex polymerase chain reaction for three 3' exons (7, 9 and 13) of the EYA1 gene. This dosage assay, combined with microsatellite marker analysis, has identified de novo deletions of the EYA1 gene and surrounding region in two patients with complex phenotypes involving features of BOR syndrome. One patient with OFC syndrome carried a large deletion of the EYA1 gene region, confirming that OFC syndrome is allelic with BOR syndrome. Microsatellite analysis has shown that comparison of the boundaries of this large deletion with other reported rearrangements of the region reduces the critical region for Duane syndrome (an eye movement disorder) to between markers D8S553 and D8S1797, a genetic distance of approximately 1 cM.  相似文献   

17.
Recently the M17S1 gene, encoding an epidermal antigen thought to play a role in cell adhesion, was mapped to chromosome bands 17q11-q12, placing it in the vicinity of the gene for the genetic disorder neurofibromatosis 1 (NF1). The pleomorphic cutaneous lesions of NF1 and the precedent for other genes being embedded within the NF1 gene prompted us to investigate whether the M17S1 gene mapped near, or within, the NF1 gene. Genetic linkage analyses revealed that M17S1 was tightly linked to NF1 and mapped within the interval bounded by D17S58 and D17S54. Physical mapping of an M17S1 cDNA on somatic cell hybrids, yeast artificial chromosomes, and an NF1 patient with a deletion involving an entire NF1 allele demonstrated that M17S1 is located at least 180 kb centromeric to the NF1 gene. The distance between the genes suggests that M17S1 is unlikely to contribute to the NF1 phenotype since a gross chromosomal rearrangement would be required to disrupt expression of both genes.  相似文献   

18.
S Cory  E Webb  J Gough  J M Adams 《Biochemistry》1981,20(9):2662-2671
Immunoglobulin heavy-chain expression is initiated by recombination between a variable region (VH) gene and one of several joining region (JH) genes located near the mu constant region (Cmu) gene, and the active VH gene can subsequently switch to another CH gene. That the general mechanism for CH switching involves recombination between sites within the JH-Cmu intervening sequence and the 5' flanking region of another CH gene is supported here by Southern blot hybridization analysis of eight IgG- and IgA-secreting plasmacytomas. An alternative model requiring successive VH linkage to similar JH clusters near each CH gene is shown to be very unlikely since the mouse genome appears to contain only one complement of the JH locus and no JH gene was detectable within large cloned sequences flanking germline C gamma 3 and C gamma 1 genes. Thus, VH-JH joining and CH switching are mediated by separate regions of "the joining-switch" or J-S element. In each plasmacytoma examined, the J-S element had undergone recombination within both the JH locus and the switch region and was shown to be linked to the functional CH gene in an IgG3, and IgG1, and three IgA secretors. Both JH joining and CH switching occurred by deletion of DNA. Switch recombination occurred at more than one site within the J-S element in different lines, even for recombination with the same CH gene. Significantly, although heavy-chain expression is restricted to one allele ("allelic exclusion"), all rearranged in each plasmacytoma. Some rearrangements were aberrant, involving, for example, deletion of all JH genes from the allele. Hence, an error-prone recombination machinery may account for allelic exclusion in many plasmacytomas.  相似文献   

19.
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号