首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The α -toxin (phospholipase C) of Clostridium perfringens has been reported to contain catalytically essential zinc ions We report here that histidine residues are essential for the co-ordination of these ion(s). Incubation of alpha toxin with diethylpyrocarbonate, a histidine modifying reagent, did not result in the loss of phospholipase C activity unless the protein was first incubated with EDTA, suggesting that zinc ions normally protect the susceptible histidine residues. When the amino acid sequences of three phospholipase C's were aligned, essential zinc binding histidine residues in the non-toxic B. cereus phospholipase C were found in similar positions in the toxic C. perfringens enzyme and the weakly toxic C. bifermentans phospholipase C.  相似文献   

2.
Replacement of the Trp-1 in Clostridium perfringens alpha-toxin with tyrosine caused no effect on hemolytic and phospholipase C (PLC) activities or on binding to the zinc ion, but that of the residue with alanine, glycine and histidine led to drastic decreases in these activities and a significant reduction in binding to the zinc ion. The hemolytic and PLC activities of W1H and W1A were significantly increased by the preincubation of these variant toxins with zinc ions, but the preincubation of W1G with the metal ion caused little effect on these activities. Gly-Ile-alpha-toxin, which contained an additional Gly-Ile linked to the N-terminal amino acid of alpha-toxin, did not show hemolytic activity, but showed about 6% PLC activity of the wild-type toxin. A mutant toxin, which contained an additional Gly-Ile linked to the N-terminus of a protein lacking 4 N-terminal residues of alpha-toxin, showed about 1 and 6% hemolytic and PLC activities of the wild-type toxin, respectively. Incubation of the mutant toxin with zinc ions caused a significant increase in PLC activity. These observations suggested that Trp-1 is not essential for toxin activity, but plays a role in binding to zinc ions.  相似文献   

3.
Clostridium perfringens alpha-toxin is a 370-residue, zinc-dependent, phospholipase C that is the key virulence determinant in gas gangrene. It is also implicated in the pathogenesis of sudden death syndrome in young animals and necrotic enteritis in chickens. Previously characterized alpha-toxins from different strains of C. perfringens are almost identical in sequence and biochemical properties. We describe the cloning, nucleotide sequencing, expression, characterization, and crystal structure of alpha-toxin from an avian strain, SWan C. perfringens (SWCP), which has a large degree of sequence variation and altered substrate specificity compared to these strains. The structure of alpha-toxin from strain CER89L43 has been previously reported in open (active site accessible to substrate) and closed (active site obscured by loop movements) conformations. The SWCP structure is in an open-form conformation, with three zinc ions in the active site. This is the first example of an open form of alpha-toxin crystallizing without the addition of divalent cations to the crystallization buffer, indicating that the protein can retain three zinc ions bound in the active site. The topology of the calcium binding site formed by residues 269, 271, 336, and 337, which is essential for membrane binding, is significantly altered in comparison with both the open and closed alpha-toxin structures. We are able to relate these structural changes to the different substrate specificity and membrane binding properties of this divergent alpha-toxin. This will provide essential information when developing an effective vaccine that will protect against C. perfringens infection in a wide range of domestic livestock.  相似文献   

4.
The inactivation of phospholipase C from Bacillus cereus at pH6 by diethyl pyrocarbonate parallelled the N-ethoxyformylation of a single histidine residue in the enzyme. The inactivation arose from a decrease in the maximum velocity of the enzymic reaction with no effect on the Km value. The inactivation did not apparently alter the ability of the enzyme to bind to a substrate-based affinity gel. The native enzyme contained only one reactive histidine residue. Removal of the two zinc atoms from the enzyme increased the number of reactive histidine residues to five, whereas in the totally denatured enzyme nearly eight such residues were available for reaction with diethyl pyrocarbonate. The enzyme thus appears to contain one histidine residue that is essential for catalytic activity and four that may be involved in co-ordinating the zinc atoms in the structure.  相似文献   

5.
Zinc is essential but toxic in excess. Bacterial metallothionein, SmtA from Synechococcus PCC 7942, sequesters and detoxifies four zinc ions per molecule and contains a zinc finger structurally similar to eukaryotic GATA. The dearth of other reported bacterial metallothioneins has been surprising. Here we describe related bacterial metallothioneins (BmtA) from Anabaena PCC 7120, Pseudomonas aeruginosa and Pseudomonas putida that bind multiple zinc ions with high stability towards protons. Thiol modification demonstrates that cysteine coordinates zinc in all of these proteins. Additionally, (111)Cd-NMR, and (111)Cd-edited (1)H-NMR, identified histidine ligands in Anabaena PCC 7120 BmtA, analogous to SmtA. A related Escherichia coli protein bound only a single zinc ion, via four cysteine residues, with low stability towards protons; (111)Cd-NMR and (111)Cd-edited (1)H-NMR confirmed exclusive cysteine-coordination, and these cysteine residues reacted rapidly with 5,5'-dithiobis-(2-nitrobenzoic acid). (1)H-NMR of proteins from P. aeruginosa, Anabaena PCC 7120 and E. coli generated fingerprints diagnostic for the GATA-like zinc finger fold of SmtA. These studies reveal first the existence of multiple bacterial metallothioneins, and second proteins with SmtA-like lone zinc fingers, devoid of a cluster,and designated GatA. We have identified 12 smtA-like genes in sequence databases including four of the gatA type.  相似文献   

6.
Clostridium perfringens phospholipase C (PLC), also called alpha-toxin, is the major virulence factor in the pathogenesis of gas gangrene. The toxic activities of genetically engineered alpha-toxin variants harboring single amino-acid substitutions in three loops of its C-terminal domain were studied. The substitutions were made in aspartic acid residues which bind calcium, and tyrosine residues of the putative membrane-interacting region. The variants D269N and D336N had less than 20% of the hemolytic activity and displayed a cytotoxic potency 103-fold lower than that of the wild-type toxin. The variants in which Tyr275, Tyr307, and Tyr331 were substituted by Asn, Phe, or Leu had 11-73% of the hemolytic activity and exhibited a cytotoxic potency 102- to 105-fold lower than that of the wild-type toxin. The results demonstrated that the sphingomyelinase activity and the C-terminal domain are required for myotoxicity in vivo and that the variants D269N, D336N, Y275N, Y307F, and Y331L had less than 12% of the myotoxic activity displayed by the wild-type toxin. This work therefore identifies residues critical for the toxic activities of C. perfringens PLC and provides new insights toward understanding the mechanism of action of this toxin at a molecular level.  相似文献   

7.
delta-Aminolevulinic acid dehydratase (5-aminolevulinic acid hydro-lyase (adding 5-aminolevulinic acid and cyclizing), EC 4.2.1.24 purified from bovine liver in the presence of both SH-reducing reagent and zinc during the purification contained one zinc atom and eight SH groups/subunit. This preparation showed the full enzymatic activity even in the absence of thiol activator. It was found that two cysteine residues, one zinc atom and two histidine residues were involved in the active site. The enzyme was fullly active as long as two SH groups in the active site remained in the reduced form even in the absence of zinc. However, the enzymatic activity was completely lost, with a concomitant loss of bound zinc, upon oxidation of the SH groups to a disulfide bond, modification of SH groups with chemical reagents, or mercaptide formation by heavy metals. Thus, it is apparent that the activity depends on the essential SH groups. The zinc is not absolutely essential for the activity but may be required to prevent the essential SH groups from autooxidation by coordination. Binding experiments indicated that there was one binding site of zinc/subunit. Photooxidation of histidine residues diminished both enzymatic activity and bound zinc, suggesting that the histidine residues not only constituted the active site but also served as a possible ligand to zinc.  相似文献   

8.
The two cysteinyl residues present in histidine decarboxylase from Lactobacillus 30a differ greatly in reactivity. One (class 1) reacts readily in the native state with dithiobis-(2-nitrobenzoate) with complete loss of enzyme activity; the other (class 2) reacts only after denaturation of the enzyme (Lane, R. S., and Snell, E. E. (1976) Biochemistry 15, 4175-4179). These differences in reactivity permitted use of covalent (disulfide) chromatography to isolate separate peptides that contain these two residues. Sequence analysis showed that the class 1 cysteinyl residue is at position 147 in a hydrophilic portion of the alpha chain (Huynh, Q. K., Recsei, P. A., Vaaler, G. L., and Snell, E. E. (1984) J. Biol. Chem. 259, 2833-2839), while the class 2 cysteinyl residue is present at position 71, adjacent to a hydrophobic portion of the same chain. Cysteinyl peptides identical with or homologous to the class 2 cysteinyl peptide of the Lactobacillus 30a enzyme were isolated from the alpha subunits of histidine decarboxylases from Lactobacillus buchneri and Clostridium perfringens, respectively. The L. buchneri enzyme also contained a peptide homologous to the class 1 cysteinyl peptide from Lactobacillus 30a. However, no corresponding peptide was present in the enzyme from C. perfringens, in which the second cysteinyl residue of the alpha chain occupies position 3, very near the essential pyruvoyl residue. This enzyme, unlike those from Lactobacillus 30a or L. buchneri, also contains one cysteinyl residue in its beta chain. Although Cys 147 is an active site residue in histidine decarboxylase from Lactobacillus 30a, the absence of a corresponding residue in the C. perfringens enzyme confirms previous indications (Recsei, P. A., and Snell, E. E. (1982) J. Biol. Chem. 257, 7196-7202) that this SH group is not essential for decarboxylase action.  相似文献   

9.
Phospholipase C activity was elevated in pathogenic Vibrio parahaemolyticus isolated from patients. Phospholipase A activity was more pronounced in the nonpathogenic V. parahaemolyticus strains isolated from water. Extracts of the strains containing phospholipase C and A activity but no thermostable direct haemolysin (TDH) were capable of producing lesions in guinea pig skin indicating the presence of a toxic factor other than TDH. It is suggested that the toxic factor may be phospholipase C since the purified enzyme from Clostridium perfringens produced a similar reaction in guinea pig skin.  相似文献   

10.
A new procedure for the purification of phospholipase C from Clostridium perfringens has been devised that results in essentially pure enzyme. The procedure consists of ammonium sulfate fractionation, ion-exchange chromatography on QAE-Sephadex, and affinity chromatography on phosphatidylcholine linked to Sepharose. The molecular weight of the enzyme, determined by sodium dodecyl sulfate-gel electrophoresis, amino acid analysis, and gel filtration, is 43,000; and the isoelectric point is pH 5.4. The enzyme was optimally active with phosphatidylcholine dispersed in sodium deoxycholate, although appreciable activity was observed with either phosphatidylcholine or sphingomyelin dispersed with ethanol. The requirement for metal ions in the assay could be met by a number of different ions. The pure enzyme was found to contain 2 mol zinc per mol enzyme, thus implicating it as a zinc metalloenzyme.  相似文献   

11.
Mutagenesis of H-68 or -148 in Clostridium perfringens alpha-toxin resulted in complete loss of hemolytic, phospholipase C, sphingomyelinase, and lethal activities of the toxin. These activities of the variant toxin at H-126 or -136 decreased by approximately 100-fold of the activities of the wild-type toxin. Mutation at H-46, -207, -212, or -241 showed no effect on the biological activities, indicating that these residues are not essential for these activities. The variant toxin at H-11 was not detected in culture supernatant and in cells of the transformant carrying the variant toxin gene. Wild-type toxin and the variant toxin at H-148 bound to erythrocytes in the presence of Ca2+; however, the variant toxins at H-68, -126, and -136 did not. Co2+ and Mn2+ ions stimulated binding of the variant toxin at H-68, -126, and -136 to membranes in the presence of Ca2+ and caused an increase in hemolytic activity. Wild-type toxin and the variant toxins at H-68, -126, and -136 contained two zinc atoms in the molecule. Wild-type toxin inactivated by EDTA contained two zinc atoms. These results suggest that wild-type toxin contains two tightly bound zinc atoms which are not coordinated to H-68, -126, and -136. The variant toxin at H-148 possessed only one zinc atom. Wild-type toxin and the variant toxin at H-148 showed [65Zn]2+ binding, but the variant toxins at H-68, -126, and -136 did not. Furthermore, [65Zn]2+ binding to wild-type toxin was competitively inhibited by unlabeled Zn2+, Co2+, and Mn2+. These results suggest that H-68, -126, and -136 residues bind an exchangeable and labile metal which is important for binding to membranes and that H-148 tightly binds one zinc atom which is essential for the active site of alpha-toxin.  相似文献   

12.
The cyanobacterial metallothionein (MT) SmtA is the prototype for bacterial MTs and protects against elevated levels of zinc. In contrast to mammalian MTs, bacterial MTs coordinate to metal ions not only via cysteine sulfurs, but unusually for MTs, also via histidine nitrogens. To investigate whether histidine coordination in these metal-sulfur clusters provides advantages over S-coordination only, we mutated the two metal-binding histidine residues in the cyanobacterial MT SmtA from Synechococcus PCC7942 to cysteines. We show that the mutant proteins are still capable of binding up to four zinc ions as is the wild-type protein. However, the mutations perturb protein folding and metal-binding dynamics. Interestingly, several homologues of SmtA also show variations in these two residues. We conclude that histidine residues in Synechococcus PCC7942 SmtA have a stabilising effect due to electrostatic interactions that impact on protein folding and metal cluster charge, and are involved in fine-tuning the reactivity of the bound metal ions.  相似文献   

13.
1. When heated in 8 M-urea, phospholipase C(EC 3.1.4.3) from Bacillus cereus undergoes conformational transitions depending on the temperatures used. These transitions were studied by examining protein fluorescence, iodide quenching of protein fluorescence, u.v. difference spectroscopy, chemical availability of histidine residues in the enzyme, circular dichroism and catalytic activity. 2. Unless simultaneously exposed to elevated temperatures the enzyme appears to be unaffected by 8 M-urea. Removal of the two zinc atoms from the enzyme renders phospholipase C very sensitive to denaturation by 8 M-urea as indicated by fluorescence emission spectra and circular dichroism. 3. Both the native and the zinc-free enzymes are markedly more resistant to irreversible thermal inactivation in the presence of 8 M-urea than in its absence. 4. The response of the enzyme to 8 M-urea and the role of zinc in stabilizing the enzyme are discussed.  相似文献   

14.
The conserved amino-terminal region of the largest subunit of yeast RNA polymerase C is capable of binding zinc ions in vitro. By oligonucleotide-directed mutagenesis, we show that the putative zinc-binding motif CX2CX6-12CXGHXGX24-37CX2C, present in the largest subunit of all eukaryotic and archaebacterial RNA polymerases, is essential for the function of RNA polymerase C. All mutations in the invariant cysteine and histidine residues conferred a lethal phenotype. We also obtained two conditional thermosensitive mutants affecting this region. One of these produced a form of RNA polymerase C which was thermosensitive and unstable in vitro. This instability was correlated with the loss of three of the subunits which are specific to RNA polymerase C: C82, C34, and C31.  相似文献   

15.
??-Crystallin, a member of the small heat shock protein family is the major protein of mammalian eye lens and is a molecular chaperone. As there is no protein turn over in the lens, stability of ??-crystallin is one of the most crucial factors for its survival and function. We previously reported that the molecular chaperone-like activity and stability of ??-crystallin dramatically increased in the presence of Zn2+ (Biochemistry, 2008). We also reported that each subunit of ??-crystallin could bind multiple zinc ions through inter-subunit bridging giving rise to enhanced stability (Biopolymers, 2011). The amino acid residues involved in zinc binding were not known. Since cysteine residues were not responsible for binding to Zn2+, we tried to identify the histidine residues bound to zinc ions. We modified recombinant ??A- and ??B-crystallin with diethylpyrocarbonate (DEPC) a histidine modifying reagent, in presence and absence of Zn2+ followed by tryptic digestion. The residues modified by DEPC were identified through peptide mass matching by MALDI mass spectrometry. We have clearly identified H79, H107 and H115 of ??A-crystallin and H104, H111 and H119 of ??B-crystallin as the Zn2+ binding residues. The significance of the histidine rich sequence region of ??-crystallin for its stability is discussed.  相似文献   

16.
Zinc-dependent superantigens can be divided into two subfamilies based on how they use zinc ions for interactions with major histocompatibility complex (MHC) class II molecules. Members of the first subfamily use zinc ions for interactions with histidine 81 on the beta-chain of MHC class II molecules, whereas members of the second subfamily use zinc ions for dimer formation. The zinc-binding motif is located in the C terminus of the molecule in both subfamilies. While our recent studies with Mycoplasma arthritidis-derived mitogen (MAM) have provided the first direct evidence demonstrating the binding to MHC class II molecules in a zinc-dependent manner, it still not known how zinc coordinates the interaction. Data presented here show that the zinc ion is mainly required to induce MAM/MAM dimer formation. Residues in the N terminus of MAM are involved in dimer formation and MHC class II binding, while histidine 14 and aspartic acid 31 of the MAM sequence are the major residues mediating MAM/MAM dimerization. Zinc-induced dimer formation is necessary for MAM binding, MHC class II-induced cell-cell adhesion, and efficient T cell activation. Together these results depict the unique mode of interaction of MAM in comparison with other superantigens.  相似文献   

17.
The enzymatic activity of purified phospholipase C (alpha toxin) from Clostridium perfringens was investigated with various phospholipid monolayers. A two-step reaction was used. Enzymatic hydrolysis of insoluble lecithin films by phospholipase C, generating 1,2-diacylglycerol and water-soluble phosphocholine, was coupled with the action of pancreatic lipase in order to give rise to fatty acid and 2-monoacylglycerol, which are rapidly desorbed from the interface. With this new procedure, it is possible to obtain continuous and accurate kinetic measurements of the phospholipase C catalyzed reaction with phospholipid monolayers as the substrate. It is thus possible to avoid the use of radiolabeled substrates as necessary in previous studies, and the difficulties caused by diacylglycerol accumulation in the lipid film are minimized. No hydrolysis was detected when either phosphatidylethanolamine, phosphatidylserine, or phosphatidylglycerol films were used as substrates. By means of a film transfer technique, Ca2+ and Zn2+ ions were found to play a specific and critical role. The present study demonstrates clearly for the first time that Ca2+ is essential for enzyme binding to lipid films, whereas Zn2+ is specifically involved in the catalytic hydrolysis of the substrate.  相似文献   

18.
Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1) gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.  相似文献   

19.
The lethal, cytolytic α-toxin (phospholipase C) of Clostridium perfringens consists of two distinct modules: the larger N-terminal domain catalyses phospholipid hydrolysis, and its activity is potentiated by a smaller C-terminal domain. Calcium ions are essential for the binding of α-toxin to lipid films. Sixteen α-toxin variants with single amino acid substitutions in the C-terminal region were obtained using site-directed mutagenesis and T7 expression technology. Five of these variants showed reduced phospholipase C activity and were considerably less active than native α-toxin under calcium-limiting conditions. Replacement of Thr-272 by Pro diminished phospholipase C activity, severely affected haemolysis and platelet aggregation and perturbed a surface-exposed conformational epitope. The results of sequence comparisons and molecular modelling indicate that the C-terminal region probably belongs to the growing family of C2β-barrel domains, which are often involved in membrane interactions, and that the functionally important substitutions are clustered at one extremity of the domain. The combined findings suggest that the C-terminal region of α-toxin mediates interactions with membrane phospholipids in a calcium-dependent manner. Mutations to this domain may account for the natural lack of toxicity of the α-toxin homologue, phospholipase C of Clostridium bifermentans .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号