首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Physiology of Heterosis in Sorghum with Respect to Environmental Stress   总被引:1,自引:0,他引:1  
The hypothesis that heterosis in biomass production of sorghum(Sorghum bicolor L. Moench) may be ascribed to stability incarbon exchange rate (CER) over a wide range of environmentalconditions was evaluated. This hypothesis was based on previousresults from detached leaves that hybrids sustained greaterCER over a wider temperture range than their parents. Two grain sorghum hybrids (ATx378/RTx430 and ATx378/RTx434)and their parental lines were grown in the greenhouse in a gradientof ambient temperatures under two water regimes (well-irrigatedand drought up to heading). Plant water-use (estimated by weighingpots), leaf area, leaf gas exchange, grain yield, and above-groundbiomass were determined. Significant heterosis was found for biomass, grain yield perplant, and grain number per panicle. No heterosis occurred forharvest index, indicating that heterosis in grain yield wasdue to heterosis in biomass. Neither growth duration nor leafarea could explain heterosis in biomass. CER and stomatal conductancefor hybrid ATx378/RTx430 in the controls were greater than forboth its parents at leaf temperatures above 38 °C. This,however, was not observed in the other hybrid which was lessheterotic for biomass and grain yield in the controls. WhenCER data were subjected to a stability analysis by joint linearregression, the two hybrids had greater CER than their respectiveparents especially under conditions favouring high CER. Whenextreme stress conditions developed, the hybrid's performancedepended on its genetic background more than on heterosis. Sorghum, Sorghum bicolor L. Moench., heterosis, hybrids, photosynthesis, transpiration, stomata, drought, heat, temperature  相似文献   

2.
Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22–29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5‐bisphosphate carboxylase/oxygenase)‐limited photosynthesis but also from electron transport‐limited photosynthesis; as a result, photosynthetic rates could be improved for both light‐saturated and light‐limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ‐plasm, especially the variation in parameters determining light‐limited photosynthesis.  相似文献   

3.
Water-use efficiency is thought to be related to plant performance and natural selection for plants in arid habitats, based on a general expectation that increased water-use efficiency is associated with decreased carbon gain and biomass accumulation. Using leaf carbon isotope discrimination Δ to determine integrated water-use efficiency, we estimated genetic variance for, and examined the relationships among Δ, biomass, and gas exchange characters for full-sibling families of the woody shrub, Chrysothamnus nauseosus, grown from seed collected at Tintic, Utah. In both well-watered greenhouse and common garden experiments, and water-limited common garden experiments, there were significant family differences for Δ, biomass, and morphological characters, indicating a potential for genetic change in response to selection. However, estimates of broad-sense heritabilities for Δ were low, indicating that the rate of change in response to selection would be relatively slow. This was consistent with the large amount of phenotypic plasticity observed for Δ as it differed with water treatment and year in the garden experiment. Phenotypically, aboveground biomass and Δ were negatively correlated within the well-watered treatments (i.e., more water-use efficient plants were larger), not correlated within the water-limited treatment, and positively correlated for combined well-watered and water-limited garden treatments, suggesting that variation in both photosynthetic capacity and stomatal limitation contribute to the variation in Δ. In contrast to the phenotypic correlations, genetic correlations for biomass and Δ were consistently negative within each treatment, and selection for higher water-use efficiency through low Δ for C. nauseosus plants in this population would tend to shift populations toward larger plants. For C. nauseosus, increased water-use efficiency is not necessarily associated with decreased carbon gain.  相似文献   

4.
The aims of this research were to test the influence of surface soil drying on photosynthesis, root respiration and grain yield of spring wheat (Triticum aestivum), and to evaluate the relationship between root respiration and grain yield. Wheat plants were grown in PVC tubes 120 cm in length and 10 cm in diameter. Three water regimes were employed: (a) all soil layers were irrigated close to field water capacity (CK); (b) upper soil layers (0–40 cm from top) drying (UD); (c) lower soil layer (80–120 cm from top) wet (LW). The results showed that although upper drying treatment maintained the highest root biomass, root respiration and photosynthesis rates at anthesis, the root respiration of the former was significantly (P < 0.05) lower than the latter at the jointing stage. There were no differences in water use efficiency or harvest index between plants from the upper drying and well-watered treatment. However, the grain weight for plants in the upper drying treatment was significantly (P< 0.05) higher than that of in well-watered control. The results suggest that reduced root respiration rate and the amount of photosynthates utilized by root respiration in early season growth may also have contributed to improve crop production under soil drying. Reduced root activity and root respiration rate, in the early growth stage, not only increased the photosynthate use efficiency (root respiration rate: photosynthesis ratio), but also grain yield. Rooting into a deeper wet soil profile before grain filling was crucial for spring wheat to achieve a successful seedling establishment and high grain yield.  相似文献   

5.
Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6/f complex between 10 and 100% of wild‐type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6/f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single‐leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6/f complex could be a potential target for enhancing photosynthetic capacity in higher plants.  相似文献   

6.
Fertilizer N availability impacts photosynthesis and crop performance, although cause–effect relationships are not well established, especially for field-grown plants. Our objective was to determine the relationship between N supply and photosynthetic capacity estimated by leaf area index (LAI) and single leaf photosynthesis using genetically diverse field-grown maize (Zea mays L.) hybrids. We compared a high yield potential commercial hybrid (FR1064 x LH185) and an experimental hybrid (FR1064 x IHP) with low yield potential but exceptionally high grain protein concentration. Plant biomass and physiological traits were measured at tassel emergence (VT) and at the grain milk stage (R3) to assess the effects of N supply on photosynthetic source capacity and N uptake, and grain yield and grain N were measured at maturity. Grain yield of FR1064 x LH185 was much greater than FR1064 x IHP even though plant biomass and LAI were larger for FR1064 x IHP, and single leaf photosynthesis was similar for both hybrids. Although photosynthetic capacity was not related to hybrid differences in productivity, increasing N supply led to proportional increases in grain yield, plant biomass, LAI, photosynthesis, and Rubisco and PEP carboxylase activities for both hybrids. Thus, a positive relationship between photosynthetic capacity and yield was revealed by hybrid response to N supply, and the relationship was similar for hybrids with a marked difference in yield potential. For both hybrids the N response of single leaf CER and initial Rubisco activity was negative when expressed per unit of leaf N. In contrast, PEP carboxylase activity per unit leaf N increased in response to N availability, indicating that PEP carboxylase served as a reservoir for excess N accumulation in field-grown maize leaves. The correlation between CER and initial Rubisco activity was highly significant when expressed on a leaf area or a total leaf basis. The results suggest that regardless of genotypic yield potential, maize CER, and potentially grain yield, could be improved by increasing the partitioning of N into Rubisco.  相似文献   

7.
Photosynthesis is fundamental to biomass production, but sensitive to drought. To understand the genetics of leaf photosynthesis, especially under drought, upland rice cv. Haogelao, lowland rice cv. Shennong265, and 94 of their introgression lines (ILs) were studied at flowering and grain filling under drought and well-watered field conditions. Gas exchange and chlorophyll fluorescence measurements were conducted to evaluate eight photosynthetic traits. Since these traits are very sensitive to fluctuations in microclimate during measurements under field conditions, observations were adjusted for microclimatic differences through both a statistical covariant model and a physiological approach. Both approaches identified leaf-to-air vapour pressure difference as the variable influencing the traits most. Using the simple sequence repeat (SSR) linkage map for the IL population, 1-3 quantitative trait loci (QTLs) were detected per trait-stage-treatment combination, which explained between 7.0% and 30.4% of the phenotypic variance of each trait. The clustered QTLs near marker RM410 (the interval from 57.3?cM to 68.4?cM on chromosome 9) were consistent over both development stages and both drought and well-watered conditions. This QTL consistency was verified by a greenhouse experiment under a controlled environment. The alleles from the upland rice at this interval had positive effects on net photosynthetic rate, stomatal conductance, transpiration rate, quantum yield of photosystem II (PSII), and the maximum efficiency of light-adapted open PSII. However, the allele of another main QTL from upland rice was associated with increased drought sensitivity of photosynthesis. These results could potentially be used in breeding programmes through marker-assisted selection to improve drought tolerance and photosynthesis simultaneously.  相似文献   

8.
To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO(2) to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g (s)), mesophyll conductance (g (m)), electron transport capacity (J (max)), and Rubisco carboxylation capacity (V (cmax)). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g (s) and g (m). One previously mapped major QTL of photosynthesis was associated with variation in g (s) and g (m), but also in J (max) and V (cmax) at flowering. Thus, g (s) and g (m), which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background.  相似文献   

9.
Among four mulberry (Morus alba L.) cultivars (K-2, MR-2, BC2-59, and S-13), highest net photosynthetic rate (P N) was observed in BC2-59 while the lowest rates were recorded with K-2. Significant differences among the four cultivars were found in leaf area, biomass production, activities of ribulose-1,5-bisphosphate carboxylase and sucrose phosphate synthase, and glucose and sucrose contents. The P N and the activities of photosynthetic enzymes in the four cultivars were significantly correlated with the growth and biomass production measured as leaf yield, total shoot mass, and aerial plant biomass.  相似文献   

10.
Crop improvement in terms of yield is rarely linked to leaf photosynthesis. However, in certain crop plants such as rice, it is predicted that an increase in photosynthetic rate will be required to support future grain yield potential. In order to understand the relationships between yield improvement and leaf photosynthesis, controlled environment conditions were used to grow 10 varieties which were released from the International Rice Research Institute (IRRI) between 1966 and 1995 and one newly developed line. Two growth light intensities were used: high light (1500 micromol m(-2) s(-1)) and low light (300 micromol m(-2) s(-1)). Gas exchange, leaf protein, chlorophyll, and leaf morphology were measured in the ninth leaf on the main stem. A high level of variation was observed among high light-grown plants for light-saturated photosynthetic rate per unit leaf area (P(max)), stomatal conductance (g), content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), and total leaf protein content. Notably, between 1966 and 1980 there was a decline in P(max), g, leaf protein, chlorophyll, and Rubisco content. Values recovered in those varieties released after 1980. This striking trend coincides with a previous published observation that grain yield in IRRI varieties released prior to 1980 correlated with harvest index whereas that for those released after 1980 correlated with biomass. P(max) showed significant correlations with both g and Rubisco content. Large differences were observed between high light- and low light-grown plants (photoacclimation). The photoacclimation 'range' for P(max) correlated with P(max) in high light-grown plants. It is concluded that (i) leaf photosynthesis may be systematically affected by breeding strategy; (ii) P(max) is a useful target for yield improvements where yield is limited by biomass production rather than partitioning; and (iii) the capacity for photoacclimation is related to high P(max) values.  相似文献   

11.
Sorghum is one of the most important crops providing food and feed in many of the world's harsher environments. Sorghum utilizes the C4 pathway of photosynthesis in which a biochemical carbon-concentrating mechanism results in high CO2 assimilation rates. Overexpressing the Rieske FeS subunit of the Cytochrome b6f complex was previously shown to increase the rate of photosynthetic electron transport and stimulate CO2 assimilation in the model C4 plant Setaria viridis. To test whether productivity of C4 crops could be improved by Rieske overexpression, we created transgenic Sorghum bicolor Tx430 plants with increased Rieske content. The transgenic plants showed no marked changes in abundances of other photosynthetic proteins or chlorophyll content. The steady-state rates of electron transport and CO2 assimilation did not differ between the plants with increased Rieske abundance and control plants, suggesting that Cytochrome b6f is not the only factor limiting electron transport in sorghum at high light and high CO2. However, faster responses of non-photochemical quenching as well as an elevated quantum yield of Photosystem II and an increased CO2 assimilation rate were observed from the plants overexpressing Rieske during the photosynthetic induction, a process of activation of photosynthesis upon the dark–light transition. As a consequence, sorghum with increased Rieske content produced more biomass and grain when grown in glasshouse conditions. Our results indicate that increasing Rieske content has potential to boost productivity of sorghum and other C4 crops by improving the efficiency of light utilization and conversion to biomass through the faster induction of photosynthesis.  相似文献   

12.
The objective of this paper was to examine the relationship between Water Use Efficiency (WUE) at the canopy and leaf levels, to determine soil moisture conditions, which can optimize yield, and WUE of sweet sorghum (Sorghum bicolor (Linn.) Moench), thus providing some theoretical foundation for using marginal land effectively and developing production of sweet sorghum. Three levels of soil moisture conditions were established, and photosynthetic characteristics and yield were measured. The canopy apparent photo-synthetic rate (CAP) and leaf photosynthetic rate (P N) were reduced gradually with increased drought stress, and the CAP was lower than the P N under every soil moisture conditions. The P N had a midday depression phenomenon, but the CAP did not exhibit this midday depression phenomenon under severe drought stress. The linear regression relationship of CAP and P N was CAP = 1.5945 + 0.1496 P N. The canopy apparent WUEC and leaf WUEL were the highest under moderate drought stress. The first was 5.3 and 5.8 times higher than the WUEL in mid-July and late August, respectively. The stem fresh biomass yield was 77 tons/ha under moderate drought stress and WUE of aboveground biomass yield (WUEB) was also the highest. Our results showed that moderate drought stress did not result in a significant reduction in biomass yield but increased WUE significantly.  相似文献   

13.
A series of substitution lines of variety ‘Timstein’ (Tim) into genetic background of Chinese Spring (CS) were used in this study. Analysis of variance indicated that significant differences exist among the substitution lines for all the traits under study except stomatal width (SW) in the water-stressed condition and stomatal length, and photosynthesis rate (PR) in the well-watered experiment. Correlation analysis indicated that PR and stomatal conductance (SC) were most important in affecting yield under the both experiments. Chromosomal analysis indicated that grain weight was affected by many chromosomes as it was expected due to its complexity under both well-watered and water-stressed conditions. In well-watered experiment, no substitution line was significantly different from recipient variety for PR. Despite results in well-watered experiment, chromosomes 3A, 3B, 4B, and 3D from variety Timestin increased PR when substituted into variety CS under the water-stressed experiment. In well-watered experiment, chromosome 7D of variety Timetin had the main effect on increasing SC, and chromosome 1A had a diverse effect on this character when substituted into recipient variety. However chromosomes 3A, 3B, 4B, and 1D of Timestin increased SC under water-stressed conditions. It was also revealed that in general the chromosomes expressed their independent effects on the characters regardless of environment. Nonetheless, some chromosomes indicated similar effects under the two conditions. Among them, chromosome 1A of Timestin reduced yield, chromosomes 2B, 7B, and 5D increased the amount of grain yield, and chromosome 1D increased SC under both conditions.  相似文献   

14.
Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non‐transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress.  相似文献   

15.
Retention of green leaf area in grain sorghum under post‐anthesis drought, known as stay‐green, is associated with greater biomass production, lodging resistance and yield. The stay‐green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay‐green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay‐green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay‐green were grown under a post‐anthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age‐related senescence and N uptake during grain filling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay‐green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay‐green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow more carbon and nitrogen to be allocated to the roots of stay‐green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.  相似文献   

16.
We have investigated the water use efficiency of whole plants and selected leaves and allocation patterns of three wheat cultivars (Mexipak, Nesser and Katya) to explore how variation in these traits can contribute to the ability to grow in dry environments. The cultivars exhibited considerable differences in biomass allocation and water use efficiency. Cultivars with higher growth rates of roots and higher proportions of biomass in roots (Nesser and Katya) also had higher leaf growth rates, higher proportions of their biomass as leaves and higher leaf area ratios. These same cultivars had lower rates of transpiration per unit leaf area or unit root weight and higher biomass production per unit water use. They also had higher ratios of photosynthesis to transpiration, and lower ratios of intercellular to external CO2 partial pressure. The latter resulted from large differences in stomatal conductance associated with relatively small differences in rates of photosynthesis. There was little variation between cultivars in response to drought, and differences in allocation pattern and plant water use efficiency between cultivars as found under well-watered conditions persisted under dry conditions. At the end of the non-watered treatment, relative growth rates and transpiration rates decreased to similar values for all cultivars. High ratios of photosynthesis to transpiration, and accordingly high biomass production per unit of transpiration, is regarded as a favourable trait for dry environments, since more efficient use of water postpones the decrease in plant water status.  相似文献   

17.

Three prevalent aliphatic polyamines (PAs) include putrescine, spermidine, and spermine; they are low-molecular-mass polycations involved in many physiological processes in plants, especially, under stressful conditions. In this experiment, three bean (Phaseolus vulgaris L.) genotypes were subjected to well-watered conditions and two moderate and severe water-stressed conditions with and without spermidine foliar application. Water stress reduced leaf relative water content (RWC), chlorophyll contents, stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate, maximal quantum yield of PSII (Fv/Fm), net photosynthetic rate (PN), and finally grain yield of bean plants. However, spermidine application elevated RWC, gs, Ci, Fv/Fm, and PN, which caused an increase in the grain yield and harvest index of bean plants under water stress. Overall, exogenous spermidine could be utilized to alleviate water stress through protection of photosynthetic pigments, increase of proline and carotenoid contents, and reduction of malondialdehyde content.

  相似文献   

18.
We have investigated the water use efficiency of whole plants and selected leaves and allocation patterns of three wheat cultivars (Mexipak, Nesser and Katya) to explore how variation in these traits can contribute to the ability to grow in dry environments. The cultivars exhibited considerable differences in biomass allocation and water use efficiency. Cultivars with higher growth rates of roots and higher proportions of biomass in roots (Nesser and Katya) also had higher leaf growth rates, higher proportions of their biomass as leaves and higher leaf area ratios. These same cultivars had lower rates of transpiration per unit leaf area or unit root weight and higher biomass production per unit water use. They also had higher ratios of photosynthesis to transpiration, and lower ratios of intercellular to external CO2 partial pressure. The latter resulted from large differences in stomatal conductance associated with relatively small differences in rates of photosynthesis. There was little variation between cultivars in response to drought, and differences in allocation pattern and plant water use efficiency between cultivars as found under well-watered conditions persisted under dry conditions. At the end of the non-watered treatment, relative growth rates and transpiration rates decreased to similar values for all cultivars. High ratios of photosynthesis to transpiration, and accordingly high biomass production per unit of transpiration, is regarded as a favourable trait for dry environments, since more efficient use of water postpones the decrease in plant water status.  相似文献   

19.
This experiment aims to test the traits responsible for the increase in yield potential of winter wheat released in Henan Province, China. Seven established cultivars released in the last 20 years and three advanced lines were assayed. The results showed that grain yield was positively correlated with harvest index(HI), kernel number per square meter, and aboveground biomass. In addition, the HI and aboveground biomass showed an increasing trend with the year of release.Therefore, we can conclude that bread wheat breeding advances during recent decades in Henan Province, China,have been achieved through an increase in HI, kernel number per square meter, and aboveground biomass. A higher d13C seems also to be involved in these advances, which suggests a progressive improvement in constitutive water use efficiency not associated with a trend towards lower stomatal conductance in the most recent genotypes. However, genetic advance Researchdoes not appear related to changes in photosynthesis rates on area basis when measured in the flag leaf or the spike,but only to a higher, whole‐spike photosynthesis. Results also indirectly support the concept that under potential yield conditions, the spike contributed more than the flag leaf to kernel formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号