首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bat family Nycteridae contains only the genus Nycteris, which comprises 13 currently recognized species from Africa and the Arabian Peninsula, one species from Madagascar, and two species restricted to Malaysia and Indonesia in South‐East Asia. We investigated genetic variation, clade membership, and phylogenetic relationships in Nycteridae with broad sampling across Africa for most clades. We sequenced mitochondrial cytochrome b (cytb) and four independent nuclear introns (2,166 bp) from 253 individuals. Although our samples did not include all recognized species, we recovered at least 16 deeply divergent monophyletic lineages using independent mitochondrial and multilocus nuclear datasets in both gene tree and species tree analyses. Mean pairwise uncorrected genetic distances among species‐ranked Nycteris clades (17% for cytb and 4% for concatenated introns) suggest high levels of phylogenetic diversity in Nycteridae. We found a large number of designated clades whose members are distributed wholly or partly in East Africa (10 of 16 clades), indicating that Nycteris diversity has been historically underestimated and raising the possibility that additional unsampled and/or undescribed Nycteris species occur in more poorly sampled Central and West Africa. Well‐resolved mitochondrial, concatenated nuclear, and species trees strongly supported African ancestry for SE Asian species. Species tree analyses strongly support two deeply diverged subclades that have not previously been recognized, and these clades may warrant recognition as subgenera. Our analyses also strongly support four traditionally recognized species groups of Nycteris. Mitonuclear discordance regarding geographic population structure in Nycteris thebaica appears to result from male‐biased dispersal in this species. Our analyses, almost wholly based on museum voucher specimens, serve to identify species‐rank clades that can be tested with independent datasets, such as morphology, vocalizations, distributions, and ectoparasites. Our analyses highlight the need for a comprehensive revision of Nycteridae.  相似文献   

2.
We infer phylogenetic relationships among isopod species of the genus Orthometopon distributed in the Greek area, comparing partial mitochondrial DNA sequences for cytochrome oxidase I (COI). All phylogenetic analyses produced topologically identical trees that revealed a well-resolved phylogeny. These trees support the monophyly of the genus Orthometopon , and suggest two clades that correspond to separate geographical regions (west and east of the mid-Aegean trench). However, the phylogenetic relationships among Greek populations of Orthometopon spp. are different from the presumed pattern on the basis of morphological evidence. The distinct geographical distribution of the major clades of the phylogenetic tree and its topology suggest a spatial and temporal sequence of phylogenetic separations, which coincide with some major palaeogeographical separations during the geological history of the Aegean Sea. The results stress the need for a reconsideration of the evolutionary history of Orthometopon species, which will help overcome difficulties encountered in classical taxonomy at the species level. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 707–715.  相似文献   

3.
4.
In the last decade, taxonomic studies have drastically increased the number of species known to inhabit the Arabian deserts. While ongoing phylogenetic studies continue to identify new species and high levels of intraspecific genetic diversity, few studies have yet explored the biogeographic patterns in this arid region using an integrative approach. In the present work, we apply different phylogenetic methods to infer relationships within the Palearctic naked‐toed geckos. We specifically address for the first time the taxonomy and biogeography of Bunopus spatalurus Anderson, 1901, from Arabia using multilocus concatenated and species tree phylogenies, haplotype networks and morphology. We also use species distribution modelling and phylogeographic interpolation to explore the phylogeographic structure of Bunopus spatalurus hajarensis in the Hajar Mountains and the roles of climatic stability and possible biogeographic barriers on lineage occurrence and contact zones in this arid mountain endemism hot spot. According to the inferred topology recovered using concatenated and species tree methods, the genus ‘Bunopus’ is polyphyletic. Bunopus tuberculatus and B. blanfordii form a highly supported clade closely related to Crossobamon orientalis, while the two subspecies of ‘Bunopus’ spatalurus branch together as an independent highly supported clade that diverged during the Miocene according to our estimations. Within B. s. hajarensis, three geographically structured clades can be recognized that according to our estimations diverged during the Late Miocene to Pliocene. The paleodistribution models indicate climatic stability during the Late Pleistocene and the lineage occurrence, and predicted contact zones obtained from phylogeographic interpolation therefore probably result from the older splits of the groups when these lineages originated in allopatry. As demonstrated by the results of the multilocus molecular phylogenetic analyses and the topological test carried out in this study, the genus ‘Bunopus’ is not monophyletic. To resolve this, we resurrect the genus Trachydactylus Haas and Battersby, 1959; for the species formerly referred to as Bunopus spatalurus. Considering the morphological differences, the high level of genetic differentiation in the 12S mitochondrial gene and the results of the phylogenetic and the cmos haplotype network analysis, we elevate Trachydactylus spatalurus hajarensis to the species level Trachydactylus hajarensis (Arnold, 1980).  相似文献   

5.
Polygonatum is the largest and most complex genus in tribe Polygonateae, comprising approximately 57 species widely distributed in the warm temperate, subtropical and boreal zones of the Northern Hemisphere. However, phylogenetic relationships in the genus remain poorly understood. The objectives of this study were to reconstruct the phylogenetic relationships of the genus using four plastid markers, and to examine the evolution of leaf arrangement in Polygonatum in the phylogenetic context of its closely related taxa. Thirty Polygonatum species were sampled to infer phylogenetic relationships using maximum‐likelihood and Bayesian analyses. The evolution of leaf arrangements was reconstructed using Bayesian, parsimony and likelihood methods. The phylogenetic analyses supported the current generic delimitation of Polygonatum, with Heteropolygonatum recognized as a distinct genus. Three major lineages in Polygonatum were well supported, largely correlated with geographical distribution and the most recent classification at the sectional level. However, our results did not support the currently recognized series, especially the two large series Verticillata and Alternifolia. Bayesian analyses support the alternate‐leaf arrangement as the ancestral state for Polygonatum, but parsimony and maximum‐likelihood analyses suggest an equivocal state for crown Polygonatum. Leaf arrangement was found to be evolutionarily labile. A new nomenclatural combination was made: P olygonatum section S ibirica (L.I.Abramova) Y.Meng, comb. nov. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 435–451.  相似文献   

6.
Iguanian lizards form a diverse clade whose members have been the focus of many comparative studies of ecology, behavior, and evolution. Despite the importance of phylogeny to such studies, interrelationships among many iguanian clades remain uncertain. Within the Old World clade Acrodonta, Agamidae is sometimes found to be paraphyletic with respect to Chamaeleonidae, and recent molecular studies have produced conflicting results for many major clades. Within the largely New World clade Pleurodonta, relationships among the 12 currently recognized major subclades (mostly ranked as families) have been largely unresolved or poorly supported in previous studies. To clarify iguanian evolutionary history, we first infer phylogenies using concatenated maximum-likelihood (ML) and Bayesian analyses of DNA sequence data from 29 nuclear protein-coding genes for 47 iguanian and 29 outgroup taxa. We then estimate a relaxed-clock Bayesian chronogram for iguanians using BEAST. All three methods produce identical topologies. Within Acrodonta, we find strong support for monophyly of Agamidae with respect to Chamaeleonidae, and for almost all relationships within agamids. Within Pleurodonta, we find strong Bayesian support for almost all relationships, and strong ML support for some interfamilial relationships and for monophyly of almost all families (excepting Polychrotidae). Our phylogenetic results suggest a non-traditional biogeographic scenario in which pleurodonts originated in the Northern Hemisphere and subsequently spread southward into South America. The pleurodont portion of the tree is characterized by several very short, deep branches, raising the possibility of deep coalescences that may confound concatenated analyses. We therefore also use 27 of these genes to implement a coalescent-based species-tree approach for pleurodonts. Although this analysis strongly supports monophyly of the pleurodont families, interfamilial relationships are generally different from those in the concatenated tree, and support is uniformly poor. However, a species-tree analysis using only the seven most variable loci yields higher support and more congruence with the concatenated tree. This suggests that low support in the 27-gene species-tree analysis may be an artifact of the many loci that are uninformative for very short branches. This may be a general problem for the application of species-tree methods to rapid radiations, even with phylogenomic data sets. Finally, we correct the non-monophyly of Polychrotidae by recognizing the pleurodont genus Anolis (sensu lato) as a separate family (Dactyloidae), and we correct the non-monophyly of the agamid genus Physignathus by resurrection of the genus Istiurus for the former Physignathus lesueurii.  相似文献   

7.
Atoposaurids were a clade of semiaquatic crocodyliforms known from the Late Jurassic to the latest Cretaceous. Tentative remains from Europe, Morocco, and Madagascar may extend their range into the Middle Jurassic. Here we report the first unambiguous Middle Jurassic (late Bajocian–Bathonian) atoposaurid: an anterior dentary from the Isle of Skye, Scotland, UK. A comprehensive review of atoposaurid specimens demonstrates that this dentary can be referred to Theriosuchus based on several derived characters, and differs from the five previously recognized species within this genus. Despite several diagnostic features, we conservatively refer it to Theriosuchus sp., pending the discovery of more complete material. As the oldest known definitively diagnostic atoposaurid, this discovery indicates that the oldest members of this group were small‐bodied, had heterodont dentition, and were most likely widespread components of European faunas. Our review of mandibular and dental features in atoposaurids not only allows us to present a revised diagnosis of Theriosuchus, but also reveals a great amount of variability within this genus, and indicates that there are currently five valid species that can be differentiated by unique combinations of dental characteristics. This variability can be included in future broad‐scale cladistics analyses of atoposaurids and closely related crocodyliforms, which promise to help untangle the complicated taxonomy and evolutionary history of Atoposauridae. © 2015 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

8.
9.
The genus Ixchela Huber is composed of 20 species distributed from north‐eastern Mexico to Central America, including the five new species described here from Mexico: I xchela azteca sp. nov. , I xchela jalisco sp. nov. , I xchela mendozai sp. nov. , I xchela purepecha sp. nov. and I xchela tlayuda sp. nov. We test the monophyly and investigate the phylogenetic relationships among species of the genus Ixchela using morphological and molecular data. Parsimony (PA) analysis of 24 taxa and 40 morphological characters with equal and implied weights supported the monophyly of Ixchela with eight morphological synapomorphies. The PA analyses with equal and implied weights, and separate Bayesian inference (BI) analyses for the CO1 gene (506 characters), concatenated gene fragments CO1 + 16S (885 characters), morphology + CO1 (546 characters) and the combined evidence data set (morphology + CO1 + 16S) (925 characters) support the monophyly of Ixchela. Our preferred topology shows two large clades; clade 1 has a natural distribution in the Mesoamerican biotic component, whereas clade 2 predominates in the Mexican Montane biotic component. The genus Ixchela diverged in the late Miocene, and the divergence between the internal clades in the genus occurred in the late Pliocene; by contrast, most of the speciation events seem to have occurred mainly during the Pleistocene, where climatic changes brought on by repeated glaciations played an important role in the diversification of the genus. © 2015 The Linnean Society of London  相似文献   

10.
The jumping pitvipers, genus Atropoides, occur at low to middle elevations throughout Middle America. Recent molecular phylogenetic analyses have included all six species of Atropoides, but only two studies have found Atropoides to be monophyletic and questions persist about relationships within the A. nummifer complex. In this study, our phylogenetic analyses of morphological data provide strong support for the monophyly of Atropoides and recover relationships within the genus that are mostly congruent with those of recent molecular studies, further supporting the evolutionary and biogeographic hypotheses proposed in those studies. Our analyses find support for a sister relationship between A. picadoi and the other Atropoides species and an A. occiduus–A. indomitus clade sister to an A. nummifer–A. mexicanus–A. olmec clade. Within the A. nummifer complex, we find A. mexicanus and A. olmec to be sister species to the exclusion of A. nummifer. We include morphological synapomorphies to support each clade within Atropoides and describe and illustrate the hemipenes of each species. In addition, we discuss the importance of morphological phylogenetics and the functionality and limitations of hemipenial data in systematics.  相似文献   

11.
Multilocus sequence analysis (MLSA) was used to refine the phylogenetic analysis of the genus Kribbella, which currently contains 17 species with validly-published names. Sequences were obtained for the 16S rRNA, gyrB, rpoB, recA, relA and atpD genes for 16 of the 17 type strains of the genus plus seven non-type strains. A five-gene concatenated sequence of 4099 nt was used to examine the phylogenetic relationships between the species of the genus Kribbella. Using the concatenated sequence of the gyrB-rpoB-recA-relA and atpD genes, most Kribbella type strains can be distinguished by a genetic distance of >0.04. Each single-gene tree had an overall topology similar to that of the concatenated sequence tree. The single-gene relA tree, used here for the first time in MLSA of actinobacteria, had good bootstrap support, comparable to the rpoB and atpD gene trees, which had topologies closest to that of the concatenated sequence tree. This illustrates that relA is a useful addition in MLSA studies of the genus Kribbella. We propose that concatenated gyrB-rpoB-recA-relA-atpD gene sequences be used for examining the phylogenetic relationships within the genus Kribbella and for determining the closest phylogenetic relatives to be used for taxonomic comparisons.  相似文献   

12.
13.
A broad multilocus phylogenetic analysis (MLPA) of the representative diversity of a genus offers the opportunity to incorporate concatenated inter-species phylogenies into bacterial systematics. Recent analyses based on single housekeeping genes have provided coherent phylogenies of Aeromonas. However, to date, a multi-gene phylogenetic analysis has never been tackled. In the present study, the intra- and inter-species phylogenetic relationships of 115 strains representing all Aeromonas species described to date were investigated by MLPA. The study included the independent analysis of seven single gene fragments (gyrB, rpoD, recA, dnaJ, gyrA, dnaX, and atpD), and the tree resulting from the concatenated 4705 bp sequence. The phylogenies obtained were consistent with each other, and clustering agreed with the Aeromonas taxonomy recognized to date. The highest clustering robustness was found for the concatenated tree (i.e. all Aeromonas species split into 100% bootstrap clusters). Both possible chronometric distortions and poor resolution encountered when using single-gene analysis were buffered in the concatenated MLPA tree. However, reliable phylogenetic species delineation required an MLPA including several “bona fide” strains representing all described species.  相似文献   

14.
Guo  Weijian  Sun  Di  Cao  Yang  Xiao  Linlin  Huang  Xin  Ren  Wenhua  Xu  Shixia  Yang  Guang 《Journal of Mammalian Evolution》2022,29(2):353-367

Recently diverged taxa are often characterized by high rates of hybridization, which can complicate phylogenetic reconstruction. For this reason, the phylogenetic relationships and evolutionary history of dolphins are still not very well resolved; the question of whether the genera Tursiops and Stenella are monophyletic is especially controversial. Here, we performed re-sequencing of six dolphin genomes and combined them with eight previously published dolphin SRA datasets and six whole-genome datasets to investigate the phylogenetic relationships of dolphins and test the monophyly hypothesis of Tursiops and Stenella. Phylogenetic reconstruction with the maximum likelihood and Bayesian methods of concatenated loci, as well as with coalescence analyses of sliding window trees, produced a concordant and well-supported tree. Our studies support the non-monophyletic status of Tursiops and Stenella because the species referred these genera do not form exclusive monophyletic clades. This suggests that the current taxonomy of both genera might not reflect their evolutionary history and may underestimate their diversity. A four-taxon D-statistic (ABBA-BABA) test, five-taxon DFOIL test, and tree-based PhyloNet analyses all showed extensive gene flow across dolphin species, which could explain the instability in resolving phylogenetic relationship of oceanic dolphins with different and limited markers. This study could be a good case to demonstrate how genomic data can reveal complex speciation and phylogeny in rapidly radiating animal groups.

  相似文献   

15.
Lack of resolution in a phylogenetic tree is usually represented as a polytomy, and often adding more data (loci and taxa) resolves the species tree. These are the ‘soft’ polytomies, but in other cases additional data fail to resolve relationships; these are the ‘hard’ polytomies. This latter case is often interpreted as a simultaneous radiation of lineages in the history of a clade. Although hard polytomies are difficult to address, model‐based approaches provide new tools to test these hypotheses. Here, we used a clade of 144 species of the South American lizard clade Eulaemus to estimate phylogenies using a traditional concatenated matrix and three species tree methods: *BEAST, BEST, and minimizing deep coalescences (MDC). The different species tree methods recovered largely discordant results, but all resolved the same polytomy (e.g. very short internodes amongst lineages and low nodal support in Bayesian methods). We simulated data sets under eight explicit evolutionary models (including hard polytomies), tested these against empirical data (a total of 14 loci), and found support for two polytomies as the most plausible hypothesis for diversification of this clade. We discuss the performance of these methods and their limitations under the challenging scenario of hard polytomies. © 2015 The Linnean Society of London  相似文献   

16.
The taxonomic value and evolutionary significance of 30 leaf epidermal characters from 238 samples representing 127 species of all seven genera in the tribe Gaultherieae (Ericaceae) and two outgroup genera were investigated by scanning electron microscopy. The character states were coded and optimized onto a maximum‐likelihood tree based on previous molecular data with Fitch parsimony and hierarchical Bayesian analysis to trace the evolution of character states throughout all internodes in the phylogenetic tree for Gaultherieae. Leaf epidermal characters were found to be largely consistent within species, but highly variable at interspecific and higher taxonomic levels. The most recent common ancestral states of 15 characters diagnosed various lineages recovered from prior studies, some with no prior morphological support. Relatively high frequencies of state change occur in the eastern Asian clade Gaultheria series Gymnobotrys + Diplycosia, the American clade G. subsection Dasyphyta p.p., the core East Asian clade and the Australia/New Zealand clade. The characters with the highest frequencies of state change are the outer stomatal ledge ornamentation type, the stomatal apparatus level, stomatal density and area, and the type of abaxial trichomes. These character state change patterns may provide insight into the ecological adaptions of Gaultherieae during their evolutionary history. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 686–710.  相似文献   

17.
One of the major issues in phylogenetic analysis is that gene genealogies from different gene regions may not reflect the true species tree or history of speciation. This has led to considerable debate about whether concatenation of loci is the best approach for phylogenetic analysis. The application of Next‐generation sequencing techniques such as RAD‐seq generates thousands of relatively short sequence reads from across the genomes of the sampled taxa. These data sets are typically concatenated for phylogenetic analysis leading to data sets that contain millions of base pairs per taxon. The influence of gene region conflict among so many loci in determining the phylogenetic relationships among taxa is unclear. We simulated RAD‐seq data by sampling 100 and 500 base pairs from alignments of over 6000 coding regions that each produce one of three highly supported alternative phylogenies of seven species of Drosophila. We conducted phylogenetic analyses on different sets of these regions to vary the sampling of loci with alternative gene trees to examine the effect on detecting the species tree. Irrespective of sequence length sampled per region and which subset of regions was used, phylogenetic analyses of the concatenated data always recovered the species tree. The results suggest that concatenated alignments of Next‐generation data that consist of many short sequences are robust to gene tree/species tree conflict when the goal is to determine the phylogenetic relationships among taxa.  相似文献   

18.
Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr‐PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr‐PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr‐PE 545, in a clade with PC‐containing Chroomonas species. A discriminant analysis‐based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell?1, the wavelength of PBP maximal absorption, and habitat. Non‐PBP pigments (alloxanthin, chl‐a, chl‐c2, α‐carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade‐offs in investments in PBPs vs. chlorophylls (a +c2).  相似文献   

19.
This paper studies the phylogeny of the rove beetle subtribe Philonthina, to test its hypothetical monophyly and to unravel the evolutionary relationships of the subtribe and its included genus‐level taxa, with emphasis on the genus Pseudohesperus and its close‐allied relatives. The phylogenetic analyses are based on 105 adult morphological characters and 66 terminal taxa, i.e., all six members of Pseudohesperus, 51 species to represent 29 other genera of the subtribe Philonthina, seven species to represent the other six subtribes of Staphylinini, one species of the tribes Arrowinini, and one of the Platyprosopini. According to the phylogenetic results obtained, the genus Erichsonius should move out from the hitherto‐defined subtribe Philonthina and thus the monophyly of this taxon is challenged. The phylogenetic tree suggests that the genera Hesperus and Belonuchus might not be monophyletic, but the monophyly of Pseudohesperus and the sister relationship between it and Bisnius are well supported. The species‐level phylogenetic relationships of the genus Pseudohesperus reveal a clear pattern of species diversification that can be correlated well with the species' zoogeographical patterns. The paper also revises the taxonomy of Pseudohesperus and describes five new species from China: Pseudohesperus luteus Li & Zhou sp. nov. , Pseudohesperus pedatiformis Li & Zhou sp. nov. , Pseudohesperus tripartitus Li & Zhou sp. nov. , Pseudohesperus sparsipunctatus Li & Zhou sp. nov. , and Bisnius lubricus Li & Zhou sp. nov. An identification key to the species of Pseudohesperus is provided and their geographical distributions are mapped. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 679–722.  相似文献   

20.
Some of the morphological characters used in Porifera taxonomy have often been shown to be inconsistent. In the present study, we tested the phylogenetic coherence of currently used taxonomic characters of the calcarean genus Clathrina. For this, 20 species of Clathrina and three other calcinean genera (Ascandra, Guancha, and Leucetta) were sequenced for the ITS and D2 region of the 28S ribosomal DNA. Maximum‐likelihood and maximum‐parsimony algorithms were used to reconstruct phylogenetic trees. Deep divergences were observed in our tree and Clathrina was shown to be paraphyletic. The major split in our topology showed a clear‐cut distinction between sponges with and without tetractine spicules. Moreover, a group of yellow‐coloured Clathrina was clearly separated from the remaining white‐coloured species. Our results show that the presence of diactines, water‐collecting tubes, the degree of cormus anastomosis, and actine shapes do not correlate with the major clades of the calcinean phylogeny. On the other hand, the presence of tripods, the absence of tetractines, and the presence of spines in the apical actine of tetractines seem to be good synapomorphies for clades in our tree. Our results demonstrate that skeleton characters can be reliably used in higher level taxonomy in Clathrinida. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1026–1034.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号