首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carnivora includes three independent evolutionary transitions to the marine environment: pinnipeds (seals, sea lions, and walruses), sea otters, and polar bears. All three lineages must contend with the thermal challenges of submersion in the marine environment. In the present study, we investigated changes in the fur associated with the transition from a terrestrial to an aquatic lifestyle, comparing fur characteristics among these lineages with those of semi‐aquatic and strictly terrestrial carnivores. Characteristics included gross morphology (hair cuticle shape, circularity, length, and density) and thermal conductivity. We found consistent trends in hair morphology associated with aquatic living, such that marine carnivores have significantly flatter (P < 0.001), shorter (P < 0.001), and denser hairs (P < 0.001) than terrestrial carnivores. However, sea lions, phocids, and walrus, which have thicker blubber layers than fur seals, have lower fur densities than fur seals (P < 0.001). Species utilizing fur for insulation in water also showed an elongation of hair cuticle scales compared to terrestrial species and marine species relying on blubber for insulation (P < 0.001). By testing pelts under hydrostatic pressure, we determined that flattening of the hairs, cuticular scale elongation, and increased fur density are critical characteristics for maintaining an insulating air layer within the fur during submersion. Overall, these results indicate consistent evolutionary modifications to the fur associated with the transition to aquatic living, as well as a decrease in fur function associated with a greater reliance on blubber in some groups. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

2.
Pinniped phylogeny and a new hypothesis for their origin and dispersal   总被引:3,自引:0,他引:3  
The relationships and the zoogeography of the three extant pinniped families, Otariidae (sea lions and fur seals), Odobenidae (one extant species, the walrus), and Phocidae (true seals), have been contentious. Here, we address these topics in a molecular study that includes all extant species of true seals and sea lions, four fur seals and the walrus. Contrary to prevailing morphological views the analyses conclusively showed monophyletic Pinnipedia with a basal split between Otarioidea (Otariidae+Odobenidae) and Phocidae. The northern fur seal was the sister to all remaining otariids and neither sea lions nor arctocephaline fur seals were recognized as monophyletic entities. The basal Phocidae split between Monachinae (monk seals and southern true seals) and Phocinae (northern true seals) was strongly supported. The phylogeny of the Phocinae suggests that the ancestors of Cystophora (hooded seal) and the Phocini (e.g. harp seal, ringed seal) adapted to Arctic conditions and ice-breeding before 12 MYA (million years ago) as supported by the white natal coat of these lineages. The origin of the endemic Caspian and Baikal seals was dated well before the onset of major Pleistocene glaciations. The current findings, together with recent advances in pinniped paleontology, allow the proposal of a new hypothesis for pinniped origin and early dispersal. The hypothesis posits that pinnipeds originated on the North American continent with early otarioid and otariid divergences taking place in the northeast Pacific and those of the phocids in coastal areas of southeast N America for later dispersal to colder environments in the N Atlantic and the Arctic Basin, and in Antarctic waters.  相似文献   

3.
In phocid seals, blubber serves as the main thermal insulation instead of fur. The thermal function of fur, at least in adult phocid seals, has therefore been questioned. We measured the relative contribution of fur to the combined thermal resistance (insulation) offered by blubber, skin, and fur in newborn and adult harp ( Pagophilus groenlandicus ) and hooded ( Cystophora cristata ) seals, in air and water, to elucidate the role of fur as insulation in phocid seals. In air the fur contributed 90% of the combined thermal resistance of blubber, skin, and fur in newborn harp seal pups and 29% in adulrs, whereas in hooded seals the fur contributed 73% in newborn pups and 34% in adults. When submerged the thermal resistance of the fur was reduced by 84%-92%, and contributed 65% to the total insulation in newborn harp seal pups and 3% in adults, and 26% in newborn hooded seal pups and 5% in adults. We conclude that in air the fur of phocid seals makes an important contribution to the insulation of pups, and also contributes considerably to the insulation of adult animals. In water, even though the thermal resistance of the fur is dramatically reduced, the fur still contributes substantially to the insulation of pups, but its contribution in adults is negligible.  相似文献   

4.
The sera of adult aquarium‐held pinnipeds from four species (family Phocidae: harbor seals (Phoca vitulina) and gray seals (Halichoerus grypus); family Otariidae: northern fur seals (Callorhinus ursinus) and California sea lions (Zalophus californianus)) were analyzed for vitamin A (retinol), vitamin E (α‐tocopherol), total cholesterol, triglycerides, phospholipids, and fatty acids. Each subject animal was healthy at the time of blood collection, was fasted for at least 12 hr prior to sampling, and was maintained on a constant diet and supplement regime throughout the study. Retinol values for the four species ranged from 0.16 to 0.92 μg/mL, with the lowest concentrations seen in the harbor seals and the highest in the northern fur seals. Vitamin E values ranged from 10.55 to 43.58 μg/mL, with northern fur seals showing the highest and gray seals the lowest levels. Vitamin E/lipid ratios (cholesterol, triglyceride, phospholipid, and total lipids) were also examined. A significant correlation was seen between vitamin E and total lipids (P<0.05) and phospholipid (P<0.01). Statistical analysis of the retinol, tocopherol, triglyceride, and phospholipid levels showed significant differences between phocid and otariid seals. Otariids had significantly lower tocopherol and phospholipid values (19.36 μg/mL, 4.29 mg/mL) and the phocids had significantly lower retinol and triglyceride levels (0.29 μg/mL, 124 mg/dL). There was no significant difference in serum cholesterol. Zoo Biol 22:83–96, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

5.
Analysis of the fatty acid (FA) composition of blubber is a valuable tool in interpreting the diet of marine mammals. This technique is based on the principle that particular FA present in prey can be incorporated largely untransformed into predator adipose tissue stores, thereby providing biochemical signatures with which to identify prey species. Several studies of phocid seals and cetaceans have documented vertical stratification in the FA composition of blubber such that inferences about diet may vary greatly depending on the layer of the blubber that is analysed. It is not known whether blubber in otariid seals (fur seals and sea lions) also displays vertical stratification in FA composition. Furthermore, it is not known whether the FA composition of blubber is uniform in these species. In the present study, the vertical and regional variation in FA composition of blubber was investigated in seven adult female Cape fur seals (Arctocephalus pusillus pusillus). The proportion of monounsaturated fatty acids (MUFA) was greater in the outer (43.6±1.3%) than inner portion (40.9±1.2%; t20=5.59, P<0.001) whereas the proportions were greater in the inner than outer portions for saturated fatty acids (23.6±0.5% and 21.9±0.6%, respectively, t20 = 5.31, P<0.001) and polyunsaturated fatty acids (PUFA, 35.5±0.7% and 34.5±0.7%, respectively, t20 = 3.81, P < 0.001). There was an inverse relationship between MUFA and PUFA in the blubber, independent of sampling location. In addition, with the exception of the inner portion from non-lactating females, blubber from the mammary area had the highest proportions of 18:19c and total MUFA, followed by blubber from the rump and neck, suggesting that the deposition and mobilisation of blubber lipids may not be uniform around the body in otariid seals. These results support the need for blubber tissue to be sampled from the same site on animals, and to the full depth of the blubber layer, to minimise variation in FA profiles that could occur if different sites and depths were sampled. Such standardisation of sampling will further aid in interpreting diet in otariid seals using the FA Signature Analysis approach.  相似文献   

6.
Dissections, manipulation of ligamentary preparations, analysis of limb proportions, and quantitative aspects of forelimb myology are used to correlate forelimb morphology in fur seals and sea lions (sub-family Otariinae) with previously published data as to their locomotor function (English, '76a). Comparisons to structure and function in generalized fissiped carnivores are then used to elucidate locomotor adaptations in fur seals and sea lions. Unique features of forelimb function during swimming in these pinnipeds include the amounts of abduction-adduction and rotary movements used. Modifications of the size, attachments and fascicle architecture of the muscles and the structure and range of possible movement of the joints suggest that in fur seals and sea lions these movements (1) take place about the glenohumeral (shoulder) joints, (2) that the movements are probably finely controlled, and (3) that they contribute to the generation of massive forward thrust via the cooperative activity of muscles capable of generating large amounts of force throughout the range of movement. Recovery movements occur through a similarly large range, and modifications of forelimb anatomy either to minimize or overcome water resistance are noted. The adaptive significance of these modifications is interpreted as allowing fur seals and sea lions to swim at speeds necessary to feed on the fast swimming prey presumably abundant in their adaptive zone.  相似文献   

7.
Swimming modes are crucial for understanding evolutionary transitions from land to sea, because locomotion affects many aspects of an animal’s life. The modern pinniped families Otariidae (fur seals and sea lions), Phocidae (true seals), and Odobenidae (walruses) are thought to share a common origin, but each differs in its primary mode of aquatic locomotion. Previous studies of locomotor evolution in pinnipeds suggested: (1) forelimb swimming was ancestral; (2) hind limb swimming evolved once at the base of the clade including Phocidae, Odobenidae, and the extinct Desmatophocidae; and (3) reversal to forelimb swimming occurred in the odobenid subfamily Dusignathinae. The oldest and most basal pinnipedimorph Enaliarctos mealsi has been portrayed as a forelimb swimmer, and the desmatophocid Allodesmus kelloggi has been portrayed as a hind limb swimmer. These interpretations have been questioned by others and are tested here. Principal components analysis of trunk and limb measurements from 58 modern semiaquatic mammals demonstrates that Enaliarctos is most similar in skeletal proportions to hind limb-dominated swimmers, whereas Allodesmus is most similar to forelimb-dominated swimmers. Principal components and discriminant function analyses of trunk and limb measurements from 24 modern pinniped species demonstrate that Enaliarctos is most similar to hind limb-swimming phocids, while Allodesmus is most similar to forelimb-swimming otariids. These interpretations complicate previous portrayals of swimming evolution in pinnipeds and can paint a very different picture of how this behavior evolved when viewed in the context of alternative phylogenetic hypotheses.  相似文献   

8.
Phylogenetic analysis of conservative nucleotide substitutions in 18 complete sequences of the mitochondrial cytochrome gene of Phocidae (true seals), Odobenidae (walruses), and Otariidae (sea lions and fur seals), plus three ursid and three felid sequences, identified the pinnipeds as monophyletic with Otariidae and Odobenidae on a common evolutionary branch. Analysis of total nucleotide differences separated the evolutionary lineages of northern and southern phocids. Both lineages are distinct from the most ancestral phocid genus, Monachus (monk seals), represented by the Hawaiian monk seal. The inclusion of the Hawaiian monk seal in the subfamily Monachinae makes the subfamily paraphyletic. Among the northern phocids, the hooded seal (genus Cystophora, chromosome number 2n = 34) is sister taxon to the Phoca complex. The Phoca complex, which is characterized by the chromosome number 2n = 32, includes genus Phoca and the monotypic genus Halichoerus (grey seal). The comparison does not support a generic distinction of Halichoerus within the Phoca complex. The present data suggest that Cystophora and Phoca separated 6 million years ago. Among the southern phocids the close molecular relationship of the Weddell and leopard seals relative to their morphological distinction exemplifies rapid adaptation to different ecological niches. This result stands in contrast to the limited morphological differentiation relative to the pronounced molecular distinctions that may occur within the Phoca complex.Correspondence to: Ú. Árnason  相似文献   

9.
We measured stable-nitrogen (δ15N) and stable-carbon (δ13C) isotope ratios in muscle and hair from 7 northern fur seals (Callorhinus ursinus) from the Pribilof Islands, Alaska, and 27 Steller sea lions (Eumetopias jubatus), and 14 harbor seals (Phoca vitulina) from the Gulf of Alaska and coast of Washington State, in order to contrast dietary information derived from isotopic vs. available conventional dietary studies. Stable-nitrogen-isotope analysis of muscle revealed that harbor seals were enriched over sea lions (mean δ15N = 18.6‰vs. 17.5‰) which were in turn enriched over northern fur seals (mean δ15N = 16.6‰). Trophic segregation among these species likely results primarily from differential reliance on herring (Clupea harengus), Atka mackerel (Pleurogrammus monopterygius), and large vs. small walleye pollock (Theregra chalcogramma). According to their δ15N values, adult male Steller sea lions showed a higher trophic position than adult females (mean δ15N: 18.0‰vs. 17.2‰), whereas adult female northern fur seals were trophically higher than juvenile male fur seals (mean δ15N: 16.5‰vs. 15.0‰). Each of these observed differences likely resulted from differential reliance on squid or differences in the size range of pollock consumed. Three northern fur seal pups showed higher δ15N enrichment over adults (mean 17.7‰vs. 15.8‰) due to their reliance on their mother's milk. Stable-carbon isotope measurements of hair revealed a cline toward more negative values with latitude. Segregation in hair δ13C between Steller sea lions and harbor seals off the coast of Washington (mean δ13C: ?13.6‰vs.?15.0‰) reflected the greater association of harbor seals with freshwater input from the Columbia River. Our study demonstrates the utility of the stable isotope approach to augment conventional dietary analyses of pinnipeds and other marine mammals.  相似文献   

10.
Fur seals and sea lions (Carnivora: Otariidae) evolved in the North Pacific and later dispersed throughout the Southern Hemisphere. However, the timing and number of dispersals into the Southern Hemisphere still remain poorly understood. To determine the biogeographical patterns of dispersal within fur seals and sea lions, we conducted cladistic analyses using combined evidence incorporating morphological and molecular data. The phylogeny produced in this study was then incorporated into Bayesian biogeographical analyses to reconstruct ancestral points of origin and dispersal patterns for otariid clades. Combined evidence analyses supported Callorhinus as the earliest diverging extant otariid, and a strongly supported northern sea lion clade (Zalophus, Eumetopias, and Proterozetes) as the sister group to a southern clade comprising the remainder of Otariidae. Fossil data constrained the timing and location of this dispersal as occurring between 6 and 7 Mya during a period of unusually cool sea surface temperatures and high productivity in the eastern equatorial Pacific, far older than suggested by prior studies. Our study indicates that the distribution of fur seals and sea lions is tightly linked to sea surface temperature and productivity, and suggests that otariids may be vulnerable to future anthropogenic climate change. © 2014 The Linnean Society of London  相似文献   

11.
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.  相似文献   

12.
The objective was to assess the aerobic capacity of skeletal muscles in pinnipeds. Samples of swimming and nonswimming muscles were collected from Steller sea lions (Eumetopias jubatus, n = 27), Northern fur seals (Callorhinus ursinus, n = 5), and harbor seals (Phoca vitulina, n = 37) by using a needle biopsy technique. Samples were either immediately fixed in 2% glutaraldehyde or frozen in liquid nitrogen. The volume density of mitochondria, myoglobin concentration, citrate synthase activity, and beta-hydroxyacyl-CoA dehydrogenase was determined for all samples. The swimming muscles of seals had an average total mitochondrial volume density per volume of fiber of 9.7%. The swimming muscles of sea lions and fur seals had average mitochondrial volume densities of 6.2 and 8.8%, respectively. These values were 1.7- to 2.0-fold greater than in the nonswimming muscles. Myoglobin concentration, citrate synthase activity, and beta-hydroxyacyl-CoA dehydrogenase were 1.1- to 2. 3-fold greater in the swimming vs. nonswimming muscles. The swimming muscles of pinnipeds appear to be adapted for aerobic lipid metabolism under the hypoxic conditions that occur during diving.  相似文献   

13.
Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the host species representing the more recent host–parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds.  相似文献   

14.
ABSTRACT: BACKGROUND: Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods: Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA). Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results: The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals) follows a different pattern than skin in otariids (California sea lions). The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion: Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits.  相似文献   

15.
Organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs) have been detected in a variety of marine mammal species at levels associated with adverse health effects. Little is known about OC levels and impacts on health in pinnipeds with different life histories. We determined the health and levels of 18 OC pesticides and 16 PCB congeners in blubber samples from 20 Steller sea lions and 39 Pacific harbor seals stranded from Oregon and Southern Washington. The most commonly detected OC at the highest concentration was p,p′- dichlorodiphenyldichloroethylene (DDE). PCBs were detected in all samples as well. Hypothesis testing indicated that diseased Steller sea lions (males and females combined) had higher contaminant concentrations than healthy Steller sea lions, and diseased Pacific harbor seals had higher concentrations of total OCs than healthy animals. Differences were also noted between diseased and healthy animals when looking at individual sexes of each species. Diseased Steller sea lions had higher mean contaminant levels than diseased harbor seals and healthy Steller sea lions had higher mean contaminant concentrations than healthy Pacific harbor seals. These results show that species differences exist in both contaminant loads and sensitivity to contaminants, which may be due to differences in life histories and physiology.  相似文献   

16.
The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.  相似文献   

17.
Neutralizing antibodies to Tillamook calicivirus (TCV) were found in sera collected from California sea lions (Zalophus c. californianus Lesson) in 1983 and 1984 and in sera collected from Steller sea lions (Eumetopias jubatus Schreber) in 1976 and 1985. The combined prevalence of antibodies for these two species was 10/228 = 4.38%. Titers ranged from 1:20 (five animals), to 1:40 (four animals), to 1:80 (one animal) by standard microtiter neutralization assay. The seropositive pinnipeds were dispersed widely along the margins of the eastern Pacific rim, from the Bering Sea to the Santa Barbara Channel. Antibodies to TCV were not found in sera collected from northern fur seals (Callorhinus ursinus L.), Pacific walruses (Odobenus rosmarus divergens Illiger), seals of the family Phocidae, or several cetacean species. Tillamook calicivirus was isolated originally in 1981 from dairy calves in Oregon; the finding of neutralizing antibodies in two widely distributed species of sea lions suggests the possibility of a marine origin for this agent.  相似文献   

18.
We investigated the impact of foraging location (nearshore vs offshore) and foraging latitude (high vs middle) on the carbon (δ13C) and nitrogen (δ15N) isotope compositions of bone collagen of northern fur seals (Callorhinus ursinus), harbor seals (Phoca vitulina), California sea lions (Zalophus californianus), and northern elephant seals (Mirounga angustirostris). Nearshore-foraging harbor seals from California had δ13C values 2.0‰ higher than female northern elephant seals foraging offshore at similar latitudes. Likewise, nearshore-foraging harbor seals from Alaska had values 1.7‰ higher than male northern fur seals, which forage offshore at high latitudes. Middle-latitude pinnipeds foraging in either the nearshore or offshore were 13C enriched by ∼1.0‰ over similar populations from high latitudes. Male northern elephant seals migrate between middle and high latitudes, but they had δ13C values similar to high-latitude, nearshore foragers. Female northern fur seal δ13C values were intermediate between those of high- and middle-latitude offshore foragers, reflecting their migration between high- and middle-latitude waters. The δ13C values of California sea lions were intermediate between nearshore- and offshore-foraging pinnipeds at middle latitudes, yet there was no observational support for the suggestion that they use offshore food webs. We suggest that their “intermediate” values reflect migration between highly productive and less-productive, nearshore ecosystems on the Pacific coasts of California and Mexico. The relative uniformity among all of these pinnipeds in δ15N values, which are strongly sensitive to trophic level, reveals that the carbon isotope patterns result from differences in the δ13C of organic carbon at the base of the food web, rather than differences in trophic structure, among these regions. Finally, the magnitude and direction of the observed nearshore-offshore and high-to middle-latitude differences in δ13C values suggest that these gradients may chiefly reflect differences in rates and magnitudes of phytoplankton production as well as the δ13C value of inorganic carbon available for photosynthesis, rather than the input of 13C-enriched macroalgal carbon to nearshore food webs. Received: 8 September 1998 / Accepted: 24 February 1999  相似文献   

19.
Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals'' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced.  相似文献   

20.
Among its functions, the hypodermal blubber layer of pinnipeds serves as both an energy reserve and insulation. This study examined seasonal changes in blubber distribution and body morphology in a group of captive changesharbor seals to test whether these changes were designed to maximize insulative effectiveness. Seasonal changes were found in girth, blubber volume, mean blubber depth, and the ratio of blubber depth to body radius (d/r ratio). These changes were more evident in older seals. The d/r ratio demonstrated a smaller relative annual change than mean blubber depth. The d/r ratio also exhibited less variation along the length of the seal than blubber depth at any given time. Similar to reports for ringed seals, and contrary to those for southern elephant seals, the harbor seals preferentially lost blubber from overinsulated areas of the body. These results suggest that core tissue and blubber mass are lost in a manner that maximizes insulative effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号