首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
The acceptance of new queens in ant colonies has profound effects on colony kin structure and inclusive fitness of workers. Therefore, it is important to study the recognition and discrimination behaviour of workers towards reproductive individuals entering established colonies. We examined the acceptance rate of queens in populations of the highly polygynous ant F. paralugubris, where the genetic differentiation among nests and discrimination ability among workers suggest that workers might reject foreign queens. We experimentally introduced young queens in their natal nest and in foreign nests. Surprisingly, the survival rate of mated queens did not differ significantly when introduced in a foreign male-producing nest, a foreign female-producing nest, or the natal nest. Moreover, the survival of virgin queens in their natal nest was twice the one of mated queens, suggesting that mating status plays an important role for acceptance. The results indicate that other factors than queen discrimination by workers are implicated in the limited longdistance gene flow between nests in these populations. Received 8 April 2008; revised 16 June 2008; accepted 1 July 2008.  相似文献   

2.
One hundred and fifty one colonies of the ant L. acervorum comprising 815 queens were sampled in dry pine forest at nine sites in SE Sweden. 63% of the colonies contained more than one queen and of these 79% had more than one egg-laying (functional) queen, i.e. were polygynous. By using the electrophoretic variation at the PGI locus a high overall relatedness (0.4) among queens from the same colony was found indicating that young queens are adopted by their mother nest. No spatial microdifferentiation in allele frequencies could be detected and it thus seems that despite restricted movements of queens there is a free gene flow in the populations.  相似文献   

3.
In ant–plant protection mutualisms, plants provide nesting space and nutrition to defending ants. Several plant–ants are polygynous. Possessing more than one queen per colony can reduce nestmate relatedness and consequently the inclusive fitness of workers. Here, we investigated the colony structure of the obligate acacia‐ant Pseudomyrmex peperi, which competes for nesting space with several congeneric and sympatric species. Pseudomyrmex peperi had a lower colony founding success than its congeners and thus, appears to be competitively inferior during the early stages of colony development. Aggression assays showed that P. peperi establishes distinct, but highly polygynous supercolonies, which can inhabit large clusters of host trees. Analysing queens, workers, males and virgin queens from two supercolonies with eight polymorphic microsatellite markers revealed a maximum of three alleles per locus within a colony and, thus, high relatedness among nestmates. Colonies had probably been founded by one singly mated queen and supercolonies resulted from intranidal mating among colony‐derived males and daughter queens. This strategy allows colonies to grow by budding and to occupy individual plant clusters for time spans that are longer than an individual queen’s life. Ancestral states reconstruction indicated that polygyny represents the derived state within obligate acacia‐ants. We suggest that the extreme polygyny of Pseudomyrmex peperi, which is achieved by intranidal mating and thereby maintains high nestmate relatedness, might play an important role for species coexistence in a dynamic and competitive habitat.  相似文献   

4.
Holzer B  Chapuisat M  Keller L 《Oecologia》2008,157(4):717-723
Understanding social evolution requires us to understand the processes regulating the number of breeders within social groups and how they partition reproduction. Queens in polygynous (multiple queens per colony) ants often seek adoption in established colonies instead of founding a new colony independently. This mode of dispersal leads to potential conflicts, as kin selection theory predicts that resident workers should favour nestmate queens over foreign queens. Here we compared the survival of foreign and resident queens as well as their relative reproductive share. We used the ant Formica exsecta to construct colonies consisting of one queen with workers related to this resident queen and introduced a foreign queen. We found that the survival of foreign queens did not differ from that of resident queens over a period of 136 days. However, the genetic analyses revealed that resident queens produced a 1.5-fold higher number of offspring than introduced queens, and had an equal or higher share in 80% of the colonies. These data indicate that some discrimination can occur against dispersing individuals and that dispersal can thus have costs in terms of direct reproduction for dispersing queens.  相似文献   

5.
In social insects, workers trade personal reproduction for indirect fitness returns from helping their mother rear collateral kin. Colony membership is generally used as a proxy for kin discrimination, but the question remains whether recognition allows workers to discriminate between kin and nonkin regardless of colony affiliation. We investigated whether workers of the ant Formica fusca can identify their mother when fostered with their mother, their sisters, a hetero‐colonial queen or hetero‐colonial workers. We found that workers always displayed less aggression towards both their mother and their foster queen, as compared to an unfamiliar hetero‐colonial queen. In support of this finding, workers maintain their colony hydrocarbon profile regardless of foster regime, yet show modifications when exposed to different environments. This indicates that recognition entails environmental and genetic components, which allow both discrimination of kin in the absence of prior contact and learning of recognition cues based on group membership.  相似文献   

6.
The number and relationships of reproducing individuals create the observed genetic heterogeneity within a social insect colony. These are referred to as sociogenetic organization and were studied in the red ants M. ruginodis and M. lobicornis. Direct observations of the queen numbers were obtained by excavating colonies. The effective number of reproducing individuals was estimated from genetic relatedness based on genotype frequency data. Sociogenetic organization of colonies of both species is simple. The number of queens is low, single mating of queens is the rule and queen to queen variation in worker production is minor. The important variables of sociogenetic organization are the number and relatedness of coexisting queens in polygynous colonies. Queen nestmates are related on average by 0.405 in polygynous colonies of M. ruginodis, showing that colonies recruit their own daughters as new reproductives. The distribution of queen number in M. ruginodis indicates that the study population contains both microgyna and macrogyna types of the species. The large proportion of colonies where the resident queen(s) is not the mother of the workers shows that the average life span of a queen is short and colonies are serially polygynous.  相似文献   

7.
Policing, i.e. all behaviours that prevent a nestmate from reproducing, is currently observed in social insects. It is presumed to have evolved to regulate potential conflicts generated by genetic asymmetries or to enhance colony efficiency by avoiding surplus reproductives and brood. In the ant, Ectatomma tuberculatum, individual queen fecundity was similar in monogynous and polygynous colonies issued from a Mexican population. Egg cannibalism, however, occurred in the polygynous colonies. The stealing and destruction of reproductive queen‐laid eggs involved only nestmate queens, even if they were highly related. No queen appeared to monopolize reproduction in the polygynous colonies. But, the observed value of relatedness among workers differed from the expected value, suggesting an unequal sharing of reproduction between queens. We discussed whether the cannibalism of queen‐laid eggs in E. tuberculatum results from a competition for reproduction among queens or if this phenomenon is related to constraints on nutritional resources.  相似文献   

8.
Understanding which parties regulate reproduction is fundamental to understanding conflict resolution in animal societies. In social insects, workers can influence male production and sex ratio. Surprisingly, few studies have investigated worker influence over which queen(s) reproduce(s) in multiple queen (MQ) colonies (skew), despite skew determining worker-brood relatedness and so worker fitness. We provide evidence for worker influence over skew in a functionally monogynous population of the ant Leptothorax acervorum. Observations of MQ colonies leading up to egg laying showed worker aggressive and non-aggressive behaviour towards queens and predicted which queen monopolized reproduction. In contrast, among-queen interactions were rare and did not predict queen reproduction. Furthermore, parentage analysis showed workers favoured their mother when present, ensuring closely related fullsibs (average r = 0.5) were reared instead of less related offspring of other resident queens (r ≤ 0.375). Discrimination among queens using relatedness-based cues, however, seems unlikely as workers also biased their behaviour in colonies without a mother queen. In other polygynous populations of this species, workers are not aggressive towards queens and MQs reproduce, showing the outcome of social conflicts varies within species. In conclusion, this study supports non-reproductive parties having the power and information to influence skew within cooperative breeding groups.  相似文献   

9.
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross‐fostered eggs originating from single‐queen (= monogynous) or multiple‐queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.  相似文献   

10.
Relatedness is a central parameter in the evolution of sociality, because kin selection theory assumes that individuals involved in altruistic interactions are related. At least three reproductive characteristics are known to profoundly affect colony kin structure in social insects: the number of reproductive queens per colony, the relatedness among breeding queens and queen mating frequency. Both the occurrence of multiple queens (polygyny) and multiple mating (polyandry) decrease within-colony relatedness, while mating among sibs increases relatedness between the workers and the brood they rear. Using DNA microsatellites, we performed a detailed genetic analysis of the colony kin structure and breeding system in three ant species belonging to the genus Plagiolepis: P. schmitzii, P. taurica and P. maura. Our data show that queens of the three species mate multiply: queens of P. maura mate with 1-2 males, queens of P. taurica with 3-11 males and queens of P. schmitzii may have 1-14 different mates. Moreover, colonies are headed by multiple queens: P. taurica and P. maura are facultatively polygynous, while P. schmitzii is obligately polygynous. Despite polyandry and polygyny, relatedness within colonies remains high because all species are characterized by sib-mating, with a fixation index F(it) = 0.25 in P. taurica, 0.24 in P. schmitzii and 0.26 in P. maura, and because the male mates of a queen are on average closely related.  相似文献   

11.
REPRODUCTIVE SKEW AND SPLIT SEX RATIOS IN SOCIAL HYMENOPTERA   总被引:1,自引:0,他引:1  
Abstract I present a model demonstrating that, in social Hymenoptera, split sex allocation can influence the evolution of reproductive partitioning (skew). In a facultatively polygynous population (with one to several queens per colony), workers vary in their relative relatedness to females (relatedness asymmetry). Split sex‐ratio theory predicts that workers in monogynous (single‐queen) colonies should concentrate on female production, as their relatedness asymmetry is relatively high, whereas workers in the polygynous colonies should concentrate on male production, as their relatedness asymmetry is relatively low. By contrast, queens in all colonies value males more highly per capita than they value females, because the worker‐controlled population sex ratio is too female‐biased from the queens' standpoint. Consider a polygynous colony in a facultatively polygynous population of perennial, social Hymenoptera with split sex ratios. A mutant queen achieving reproductive monopoly would gain from increasing her share of offspring but, because the workers would assess her colony as monogynous, would lose from the workers rearing a greater proportion of less‐valuable females from the colony's brood. This sets an upper limit on skew. Therefore, in social Hymenoptera, skew evolution is potentially affected by queen‐worker conflict over sex allocation.  相似文献   

12.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

13.
Kin selection theory predicts conflict between queens and workers in the social insect colony with respect to male production. This conflict arises from the haplodiploid system of sex determination in Hymenoptera that creates relatedness asymmetries in which workers are more closely related to the sons of other workers than to those of the queen. In annual hymenopteran societies that are headed by a single queen, the mating frequency of the queen is the only factor that affects the colony kin structure. Therefore, we examined the mating structure of queens and the parentage of males in a monogynous bumblebee, Bombus ignitus, using DNA microsatellites. In the seven colonies that were studied, B. ignitus queens mated once, thereby leading to the prediction of conflict between the queen and workers regarding male production. In each of the five queen-right colonies, the majority of the males (95%) were produced by the colony’s queen. In contrast, workers produced approximately 47% of all the males in two queenless colonies. These results suggest that male production in B. ignitus is a conflict between queen and workers.  相似文献   

14.
Summary. Previous attempts to explain worker aggression against extra queens in young social insect colonies have used kin selection arguments. These have been inconsistent with experimental evidence demonstrating aggression against extra queens without strong evidence of kin discrimination. Using a game theoretical model, I suggest a series of decision rules that are consistent with the current experimental evidence from study of young colonies of the fire ant Solenopsis invicta. These decision rules are: 1) When workers cannot directly determine which queen is their mother, they should behave in favor of a queen that maximizes the product of the chance that a queen is the workers mother multiplied by the chance that it will survive to colony maturity. In some cases, the survival potential of the different queens may be the only character that influences the workers decision. 2) Workers should delay aggression against extra queens until the workers can gain their greatest advantage through such aggression. 3) Queens may adopt strategies that allow them to dominate rivals, either by gaining an advantage in fights among the queens or by increasing their attractiveness to workers.Received 2 June 2004; revised 5 July 2004; accepted 14 July 2004.  相似文献   

15.
Summary. Polygyny, the presence of several mated queens within the same colony, is widespread in insect societies. This phenomenon is commonly associated with ecological constraints such as limited nest sites. In habitats where solitary nest foundation is risky, monogynous colonies can reintegrate young daughter queens (secondary polygyny). We studied the reproductive structure (i.e. queen number) of the ectatommine ant Ectatomma tuberculatum from Bahia State, Brazil. This species was found to present facultative polygyny: out of a total of 130 colonies collected, 39.2% were monogynous, while 43.8% were polygynous. Polygynous colonies had significantly more workers than monogynous ones. Queen number in polygynous colonies ranged from 2 to 26, with an average of 4 ± 4 queens per colony. All nestmate queens were egg-layers with no apparent dominance hierarchy or agonistic behavior. Non-nestmate queens were adopted by monogynous colonies suggesting that polygyny is secondary, originating through queen adoption. This species is characterized by an open recognition system, which probably allows a switch from monogynous to polygynous colonies. The behavioral acts of queens showed that resident queens remained frequently immobile on or near the brood, contrarily to alien or adopted queens and gynes. In addition, monogynous queens showed no behavioral or physiological (i.e. by ovarian status) differences in comparison with polygynous ones. Secondary or facultative polygyny, probably associated with queen adoption, may have been favored in particular environmental conditions. Indeed, by increasing colony productivity (i.e. number of workers) and territory size (by budding and polydomy), polygyny could uphold E. tuberculatum as a dominant species in the mosaic of arboreal ants in Neotropical habitats.Received 7 April 2004; revised 11 November 2004; accepted 15 November 2004.  相似文献   

16.
Multiple functional queens in a colony (polygyny) and multiple mating by queens (polyandry) in social insects challenge kin selection, because they dilute inclusive fitness benefits from helping. Colonies of the ant Plagiolepis pygmaea brash contain several hundreds of multiply mated queens. Yet, within‐colony relatedness remains unexpectedly high. This stems from low male dispersal, extensive mating among relatives and adoption of young queens in the natal colony. We investigated whether inbreeding results from workers expelling foreign males, and/or from preferential mating between related partners. Our data show that workers actively repel unrelated males entering their colony, and that queens preferentially mate with related males. These results are consistent with inclusive fitness being a driving force for inbreeding: by preventing outbreeding, workers reduce erosion of relatedness within colonies due to polygyny and polyandry. That virgin queens mate preferentially with related males could result from a long history of inbreeding, which is expected to reduce depression in species with regular sibmating.  相似文献   

17.
Summary. A shift in colony founding behaviour from single queen (haplometrosis) to multiple queens (pleometrosis) was observed locally in the obligate plant-ant Crematogaster (Decacrema) morphospecies 2, which is associated with Macaranga trees in Borneo. In addition, about a quarter of all mature colonies (27 of 95 trees examined) were found to be multiple queen colonies. They arose either directly from pleometrotic founding colonies or secondarily by adoption of additional queens. Using microsatellite markers, we showed that queens in colonies founded through pleometrosis are unrelated and each queen participates in producing worker offspring, albeit with significant skew in a third of the colonies. In mature polygynous colonies, all resident queens contributed to the production of workers and sexual offspring. Relatedness of queens in mature polygynous colonies was not significantly higher than in foundress associations. We hypothesize that increased nest site limitation in this specific interaction trigger the observed shift in colony founding behaviour. Crematogaster msp. 2 inhabits the light demanding pioneer plant species Macaranga pearsonii that is typical for early successional stages of secondary forests. Thus suitable host-plants for colonisation are abundant for only a short time in highly disturbed sites and become increasingly sparse when secondary forest matures.Received 6 September 2004; revised 29 November; accepted 10 December 2004.  相似文献   

18.
The behavioral traits that shape the structure of animal societies vary considerably among species but appear to be less flexible within species or at least within populations. Populations of the ant Leptothorax acervorum differ in how queens interact with other queens. Nestmate queens from extended, homogeneous habitats tolerate each other and contribute quite equally to the offspring of the colony (polygyny: low reproductive skew). In contrast, nestmate queens from patchy habitats establish social hierarchies by biting and antennal boxing, and eventually only the top-ranking queen of the colony lays eggs (functional monogyny: high reproductive skew). Here we investigate whether queen-queen behavior is fixed within populations or whether aggression and high skew can be elicited by manipulation of socio-environmental factors in colonies from low skew populations. An increase of queen/worker ratio and to a lesser extent food limitation elicited queen-queen antagonism in polygynous colonies from Nürnberger Reichswald similar to that underlying social and reproductive hierarchies in high-skew populations from Spain, Japan, and Alaska. In manipulated colonies, queens differed more in ovarian status than in control colonies. This indicates that queens are in principle capable of adapting the magnitude of reproductive skew to environmental changes in behavioral rather than evolutionary time.  相似文献   

19.
The occurrence of multiple reproductives within an ant colony changes the balance between indirect fitness benefits and reproductive competition. We test whether the number of matings by an ant queen (polyandry) correlates negatively with the number of reproductive queens in the colony (polygyny), whether the patrilines and matrilines differ in their contribution to the sexual and worker progeny and whether there is an overall reproductive skew. For these aims, we genotyped both worker and sexual offspring from colonies of the ant Formica sanguinea in three populations. Most colonies were monogynous, but eight (11%) were polygynous with closely related queens. Most queens in the monogynous colonies (86%) had mated with multiple males. The effective paternity was lower than the actual number of mates, and the paternity skew was significant. Furthermore, in some monogynous colonies, the patrilines were differently represented in the worker pupae and sexual pupae produced at the same time. Likewise, the matrilines in polygynous colonies were differently present in worker pupae and male offspring. The effective number of matings by a queen was significantly lower in polygynous colonies (mean me = 1.68) than in monogynous colonies (means 2.06–2.61). The results give support to the hypotheses that polyandry and polygyny are alternative breeding strategies and that reproductive competition can lead to different representation of patrilines and matrilines among the sexual and worker broods.  相似文献   

20.
Abstract. The influence of weight and colony origin of the queen of Solenopsis geminata (F.) (Hymenoptera: Formicidae) on worker attraction is studied under laboratory conditions. In the first experiment, worker response to individual queens of different weight from the same colony is evaluated. Heavier queens are more attractive than smaller queens to their own workers. In subsequent experiments, the colony origin effect is investigated and worker response to a pair of queens of the same weight from the same or different colonies is compared. When queens are from the same colony, workers do not show a significant preference between queens. However, when queens are from a different colony, workers are significantly more attracted to their own queen than to the foreign queen. Finally, the response of workers to queens of different weight from the same or different colonies is investigated. In both cases, workers are significantly more attracted to a heavier queen than a lighter queen, even if the lighter queen is their own queen. A putative pheromonal component (E)‐6‐(1‐pentenyl)‐2H‐2‐pyranone, is not positively correlated with queen weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号