首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Abundance and composition of periphyton and benthic macroinvertebrates were treated as potential nutrient response variables for 74 streams in montane Colorado. The streams ranged from unenriched to mildly enriched with nutrients (N, P). 2. The study showed no meaningful relationship between periphyton biomass accumulation and concentrations of total or dissolved forms of nitrogen or phosphorus. Nutrient concentrations were also unrelated to periphyton and macroinvertebrate richness, diversity and community composition. Macroinvertebrate communities did, however, show a strong positive relationship to periphyton abundance. 3. A positive response of periphyton biomass to increasing nutrient concentrations has been well documented over large ranges of nutrient concentrations. Our study suggests that the nutrient response is suppressed by other controlling factors on the lower limb of the nutrient response curve (i.e. at low nutrient concentrations); a quantitatively significant response occurs only in excess of a threshold beyond which nutrients become dominant over other controlling factors. This interpretation of the results is consistent with published meta‐analyses showing lack of nutrient response for a high proportion of experimentally enriched periphyton communities, and division of responses between N and P for communities that do show growth in response to enrichment. 4. Grazing probably is not the key controlling variable for periphyton in Colorado mountain streams, given that the highest chlorophyll concentrations are associated with the highest abundances of macroinvertebrates. Modelling indicates that the initial amount of periphyton biomass at the start of the growing season, in conjunction with elevation‐related length of the growing season and water temperature, explains most of the variation in periphyton accumulation among these streams, but there is a yet unexplained suppression of periphyton growth rates across all elevations.  相似文献   

2.
We examined the importance of temporal variability in top–down and bottom–up effects on the accumulation of stream periphyton, which are complex associations of autotrophic and heterotrophic microorganisms. Periphyton contributes to primary production and nutrient cycling and serves as a food resource for herbivores (grazers). Periphyton growth is often limited by the availability of nitrogen and phosphorus, and biomass can be controlled by grazers. In this study we experimentally manipulated nutrients and grazers simultaneously to determine the relative contribution of bottom–up and top–down controls on periphyton over time. We used nutrient diffusing substrates to regulate nutrient concentrations and an underwater electric field to exclude grazing insects in three sequential 16–17 day experiments from August to October in montane Colorado, USA. We measured algal biomass, periphyton organic mass, and algal community composition in each experiment and determined densities of streambed insect species, including grazers. Phosphorus was the primary limiting nutrient for algal biomass, but it did not influence periphyton organic mass across all experiments. Effects of nutrient additions on algal biomass and community composition decreased between August and October. Grazed substrates supported reduced periphyton biomass only in the first experiment, corresponding to high benthic abundances of a dominant mayfly grazer (Rhithrogena spp.). Grazed substrates in the first experiment also showed altered algal community composition with reduced diatom relative abundances, presumably in response to selective grazing. We showed that top–down grazing effects were strongest in late summer when grazers were abundant. The effects of phosphorus additions on algal biomass likely decreased over time because temperature became more limiting to growth than nutrients, and because reduced current velocity decreased nutrient uptake rates. These results suggest that investigators should proceed with caution when extending findings based on short‐term experiments. Furthermore, these results support the need for additional seasonal‐scale field research in stream ecology.  相似文献   

3.
Rising levels of ultraviolet radiation (UVR) striking the Earth's surface have led to numerous studies assessing its inhibitory effects on phytoplankton and periphyton in aquatic systems. Mineral nutrients such as nitrogen (N) and phosphorus (P) have been shown to increase aspects of algal metabolism and compensate for UVR inhibition. An in situ substratum enrichment technique and UV shielding was used to assess the effects of nutrient additions on periphyton exposed to different levels of UVR in Castle Lake, California during July‐August, 1997. UV shielding had no effect on total periphyton biomass, but caused shifts in species composition. The dominant periphyton species, Anabaena circinalis RAB., demonstrated sensitivity to ambient levels of UV radiation possibly due to UV inhibition of N2 ‐fixation. Total diatom biovolume decreased when shielded from UVR. Phosphorus additions continually elicited an increase in periphyton biovolume at all levels of analysis. These results suggest an interaction between nutrient status/availability and UV sensitivity.  相似文献   

4.
1. We investigated the effects of dissolved organic matter (DOM) and ultraviolet‐B (UVB) radiation on periphyton during a 30‐day experiment in grazer‐free, outdoor artificial streams. We established high [10–12 mg carbon (C) L−1] and low (3–5 mg C L−1) concentrations of DOM in artificial streams exposed to or shielded from ambient UVB radiation. Periphyton was sampled weekly for ash‐free dry mass (AFDM), chlorophyll (chl) a , algal biovolume, elemental composition [C, nitrogen (N) and phosphorus (P)], and algal taxonomic composition. 2. Regardless of the UVB environment, increased DOM concentration caused greater periphyton AFDM, chl a and total C content during the experiment. Increased DOM also significantly increased periphyton C : P and N : P (but not C : N) ratios throughout the experiment. Algal taxonomic composition was strongly affected by elevated stream DOM concentrations; some algal taxa increased and some decreased in biomass and prevalence in artificial streams receiving DOM additions. UVB removal, on the other hand, did not strongly affect periphyton biomass, elemental composition or algal taxonomic composition for most of the experiment. 3. Our results show strong effects of DOM concentration but few, if any, effects of UVB radiation on periphyton biomass, elemental composition and algal taxonomic composition. The effects of DOM may have resulted from its absorption of UVA radiation, or more likely, its provision of organic C and nutrients to microbial communities. The strong effects of DOM on periphyton biomass and elemental composition indicate that they potentially play a key role in food web dynamics and ecosystem processes in forested streams.  相似文献   

5.
Herbivores can have both direct (consumptive) and indirect (nutrient‐mediated) effects on primary producer biomass and nutrient stoichiometry. Ecological stoichiometry theory predicts that herbivores of contrasting body stoichiometry will differentially remineralize nutrients, resulting in feedbacks on producer stoichiometry. We experimentally separated direct and indirect effects of aquatic vertebrate grazers on periphyton by manipulating grazer abundance and identity in mesocosms, and using grazer exclusion cages to expose periphyton to recycled nutrients in the absence of direct grazing. In experiment 1, we used a catfish with high body phosphorus (low body N:P), Ancistrus triradiatus, to assess consumptive versus nutrient‐mediated effects of grazer density on periphyton. In experiment 2, we compared the nutrient‐mediated effects of grazing by Ancistrus triradiatus and Rana palmipes, a tadpole with low body phosphorus and high body N:P. In experiment 1, we found that increasing catfish density led to lower biomass and particulate nutrients in periphyton through direct consumptive effects, but that nutrient‐mediated indirect effects enhanced periphyton biomass when grazers were experimentally separated from direct contact with periphyton. As predicted by stoichiometry theory, nutrient recycling by this P‐rich grazer tended to increase algal C:P and N:P (although effects were not statistically significant), while their consumptive effects reduced algal C:P and N:P. In experiment 2, grazer identity had strong effects on dissolved water nutrient concentrations, N recycling (measured with a 15N tracer), and periphyton stoichiometry. In accordance with stoichiometry theory, catfish increased N concentrations and recycling rates leading to higher periphyton N:P, while tadpoles had greater effects on P availability leading to lower periphyton N:P. Our experiments elucidate the importance of both the density and identity of grazers in controlling periphyton biomass and stoichiometry through consumptive and nutrient‐mediated effects, and support the power of ecological stoichiometry theory to predict feedbacks on producer stroichiometry arising from consumer stoichiometry through nutrient recycling.  相似文献   

6.
1. Nutrient diffusing substrata (NDS) were used to determine the relative importance of nutrients and light as potential limiting factors of periphyton biomass and nitrogen (N) uptake in Mediterranean streams subjected to different human impacts. The nutrients examined were phosphorus (P) and N, and we also further differentiated between the response of periphyton communities to N species (i.e. NO3‐N and NH4‐N). To examine the effect of light and nutrients on periphyton biomass, chlorophyll a accrual rates on NDS located at open and closed canopy sites were compared. The effect of nutrient availability on periphyton uptake was measured by 15N changes on the NDS after NO315N short‐term nutrient additions. 2. Results show that light was the main factor affecting algal biomass in the study streams. Algal biomass was in general higher at open than at closed canopy sites. Nutrient availability, as simulated with the NDS experiments, did not enhance algal biomass accrual in either of the 2 light conditions. 3. In the control treatments (i.e. ambient concentrations), periphyton NO3‐N uptake rates increased and C : N molar ratios decreased consistently with increases in N availability across streams. NO3‐N uptake rates were altered when ambient N concentrations were increased artificially in the N amended NDS. Periphyton assemblages growing on N enriched substrata seemed to preferentially take up N diffusing from the substratum rather than N from the water column. This response differed among streams, and depended on ambient N availability. 4. Periphyton biomass was not significantly different between substrata exposed to the two forms of available N sources. Nonetheless, we found differences in the effects of both N sources on the uptake of N from the water column. NH4‐N seemed to be the preferred source of N for periphyton growing on NDS. 5. Results suggest that the effect of riparian zones on light availability, although seldom considered by water managers, may be more important than nutrients in controlling eutrophication effects derived from human activities. Finally, our results confirm that not only increases in concentration, but also stoichiometric imbalances should be considered when examining N retention in human altered streams.  相似文献   

7.
Summary Previous studies have shown that an algivorous grazing minnow (Campostoma anomalum) is the major herbivore in Brier Creek, a hardwater stream in south central Oklahoma. In summer and autumn schools of Campostoma virtually eliminate algae from substrate surfaces in deeper areas of some pools. The pool-to-pool distributions of algae and Campostoma reported for this stream could occur if nutrient limitation permits grazing by Campostoma to outrun algal growth. To test this hypothesis, mesh pens were built to exclude Campostoma from substrates in each of four typical Campostoma pools. N+P+K lawn fertilizer was added daily to two of the four pools; the other two, which received no fertilizer additions and which were not visibly affected by fertilizer transported downstream from the pools enriched with nutrients, served as controls. Algae accumulated rapidly on natural substrates and on unglazed ceramic tiles in grazer-exclusion pens in pools receiving N+P+K additions and more slowly in pens in both control pools. Periphyton biomass on grazed substrates in all four pools remained low throughout the experiment. Hence, Campostoma at normal densities were able to outrun algal growth even when nutrients were added. Eleven days after the experiment started, I determined biomass, biomass-specific net primary productivity, and areal net primary productivity of periphyton on substrates exposed to all combinations of grazer (+,0) and nutrient (+,0) treatments. Grazing increased biomass-specific primary productivity, prevented accumulation of biomass, and decreased areal primary productivity of periphyton. Additions of N+P+K increased biomass-specific net primary productivity of grazed and ungrazed periphyton and markedly increased biomass of periphyton on substrates protected from Campostoma. Although food supply for Campostoma appeared to be greater with nutrient additions, condition of Campostoma in pools receiving N+P+K was not significantly different from Campostoma collected from control pools 35 days after the experiment started. I conclude that although nutrient supply limits biomass-specific primary productivity of periphyton in Brier Creek, nutrient limitation in this stream exacerbates, rather than causes, the visually conspicuous pool-to-pool complimentary distribution of algae and Campostoma: in this stream, grazing by Campostoma at natural densities can outrun periphyton growth even when nutrients are added.  相似文献   

8.
Effects of macrograzers and light on periphyton stoichiometry   总被引:2,自引:0,他引:2  
Ecological stoichiometry describes the biochemical constraints of trophic interactions emerging from the different nutrient content and nutrient demand of producers and consumers, respectively. Most research on this topic originates from well-mixed pelagic food webs, whereas the idea has received far less attention in spatially structured habitats. Here, we test how light as well as grazing and nutrient regeneration by consumers affects growth and biomass of benthic primary producers. In the first laboratory experiment, we manipulated grazer presence (two different snail species plus ungrazed control), in the second experiment we factorially combined manipulation of grazer presence and light intensity. We monitored snail and periphyton biomass as well as dissolved and particulate nutrients (nitrogen and phosphorus) over time. Grazers significantly reduced algal biomass in both experiments. Grazers affected periphyton nutrient content depending on the prevailing nutrient limitation and their own body stoichiometry. In the nitrogen (N-) limited first experiment, grazers increased N both in the periphyton and in the water column. The effect was stronger for grazers with lower N-content. In the phosphorus (P-) limited second experiment, grazers increased the P-content of the periphyton, but the grazer with lower N-content had additionally positive effects on algal N. Light reduction did not affect periphyton biomass, but increased chlorophyll-, N- and P-content of the periphyton. These experiments revealed that the indirect effects of grazers on periphyton were bound by stoichiometric constraints of nutrient incorporation and excretion.  相似文献   

9.
1. Fish can play an important role in coupling benthic and pelagic habitats by consuming benthic prey and providing essential nutrients to algae in dissolved form. However, little is known about the factors affecting the magnitude of this nutrient subsidy. 2. Using laboratory and mesocosm experiments we evaluated how varying ingestion rates of bluegill sunfish (Lepomis macrochirus) affects fish excretion rates of both nitrogen (N) and phosphorus (P). During the 10‐week mesocosm experiment, we also evaluated how varying ingestion rates may affect plankton community dynamics, and nutrient flux between pelagic and benthic habitats. Lastly, bioenergetic/mass balance models were used to examine the nutrient stoichiometry of fish body composition and excretion products. 3. Under laboratory conditions, both N and P excretion rates increased with increased ingestion of benthic prey surrogates (earthworms). This effect was more pronounced for N than P. Furthermore, under the more realistic conditions of the mesocosm experiment ingestion rate had no significant effect on P excretion rate. 4. Increased fish ingestion rate in the mesocosm experiment increased total algal biomass and the flux of nutrients from the water column to sediments. Effects of variable ingestion were much stronger on periphyton biomass and algal sedimentation rates than on phytoplankton or zooplankton biomass or composition. 5. Fish body nutrient composition was greatly affected by ingestion rate. N content increased and P content decreased with ingestion rate. As a result, the N : P ratio of fish bodies also increased with ingestion rate. The N : P ratio of nutrients excreted by fish also increased with ingestion rate, counter to predictions of stoichiometric theory, which predicts that excreted N : P ratio is negatively correlated to body N : P. However, this finding can be explained by relaxing the assumption of constant nutrient assimilation rates, and our mass balance data suggest that assimilation rates vary indeed with ingestion rate. 6. Our study provides experimental evidence that translocation of benthic‐derived nutrients by fish can affect the flux of nutrients among habitats, while also suggesting that stoichiometry models need to better incorporate how variable ingestion rates affect nutrient assimilation and excretion rates.  相似文献   

10.
Costello DM  Lamberti GA 《Oecologia》2008,158(3):499-510
Riparian zones are an important transition between terrestrial and aquatic ecosystems, and they function in nutrient cycling and removal. Non-native earthworms invading earthworm-free areas of North America can affect nutrient cycling in upland soils and have the potential to affect it in riparian soils. We examined how the presence of earthworms can affect riparian nutrient cycling and nutrient delivery to streams. Two mesocosm experiments were conducted to determine how (1) the biomass of earthworms and (2) earthworm species can affect nutrient flux from riparian zones to nearby streams and how this flux can affect streamwater nutrients and periphyton growth. In separate experiments, riparian soil cores were amended with one of four mixed earthworm biomasses (0, 4, 10, or 23 g m(-2) ash-free dry mass) or with one of three earthworm species (Aporrectodea caliginosa, Lumbricus terrestris, L. rubellus) or no earthworm species. Riparian soil cores were coupled to artificial streams, and over a 36-day period, we measured nutrient leaching rates, in-stream nutrient concentrations, and periphyton growth. Ammonium leaching increased with increasing biomass and was greatest from the A. caliginosa treatments. Nitrate leaching increased through time and increased at a greater rate with higher biomass and from cores containing A. caliginosa. We suggest that the overall response of increased nitrate leaching [90% of total nitrogen (N)] was due to a combination of ammonium excretion and burrowing by earthworms, which increased nitrification rates. During both experiments, periphyton biomass increased through time but did not differ across treatments despite high in-stream inorganic N. Through time, in-stream phosphorus (P) concentration declined to <5 microg l(-1), and periphyton growth was likely P-limited. We conclude that activities of non-native earthworms (particularly A. caliginosa) can alter biogeochemical cycling in riparian zones, potentially reducing the N-buffering capacity of riparian zones and altering stoichiometric relationships in adjacent aquatic ecosystems.  相似文献   

11.
1. This study investigated the combined effects of light and phosphorus on the growth and phosphorus content of periphyton. To investigate the potential for colimitation of algal growth by these two resources, diatom‐dominated periphyton communities in large flow‐through laboratory streams were exposed under controlled conditions to simultaneous gradients of light and phosphorus. 2. Periphyton growth rate was predictably light‐limited by the subsaturating irradiances (12–88 μmol photons m?2 s?1) used in this experiment. However, phosphorus concentration also limited growth rate: growth increased hyperbolically with increasing soluble reactive phosphorus (SRP), reaching a threshold of growth saturation between 22 and 82 μg L?1. 3. Periphyton phosphorus content was strongly and nonlinearly related with SRP, reaching a maximum at 82 μg L?1 SRP. Contrary to the Light : Nutrient Hypothesis, periphyton phosphorus content did not decrease with increasing light, even at the lowest concentrations of SRP. Periphyton phosphorus was highly correlated with periphyton growth rate (Spearman's ρ = 0.63, P < 0.005). 4. Multiple regression analysis reinforced evidence of simultaneous light and phosphorus limitation. Both light and periphyton phosphorus content were significant variables in multiple regressions with growth parameters as dependent variables. Light alone accounted for 67% of the variance in periphyton biomass, and the addition of periphyton phosphorus as an additional independent variable increased the total amount of variance explained to 81%. 5. Our results did not support the hypothesis that extra phosphorus is required for photoacclimation to low light levels. Rather, the effect of additional phosphorus may have been to accommodate increased requirements for P‐rich ribosomal RNA when growth was stimulated by increased light. The potential colimitation of periphyton growth by phosphorus and light at subsaturating irradiances has important implications in both theoretical and applied aquatic ecology.  相似文献   

12.
1. Carnivory in plants is thought to enhance growth through an increased supply of nutrients, although there are considerable costs involved. It has been assumed that the relative investment of biomass in traps is inversely proportional to the availability of nutrients from non-carnivorous sources. Our aim was to test the effect of increasing nutrient concentration on investment in carnivory by Utricularia vulgaris .
2. Plants were grown under controlled conditions and nitrogen and phosphorus added at three loadings in a crossed design. Investment in carnivory was assessed as the proportion of (i) leaf biomass and (ii) leaf area comprising traps.
3. There was no effect of nutrient additions on plant growth or periphyton abundance. Investment in carnivory declined with increasing phosphorus loading. There was no effect of nitrogen, despite this being the nutrient commonly thought to be sought by carnivorous plants. Analysis of previously published data also indicated a decline in investment with increasing P availability.
4. Investment in carnivory in U. vulgaris is inversely proportional to the availability of phosphorus from non-carnivorous sources.  相似文献   

13.
Algal and plant production of nonphosphorus lipids in place of phospholipids is a physiological response to low phosphorus (P) availability. This response has been shown in culture and in marine plankton studies, but examples from freshwater algae remain minimal. Herein, we analyzed the nutrient contents and lipid composition of periphyton communities across the Florida Everglades ecosystem. We hypothesized that in phosphate‐poor areas, periphyton in high‐ and low‐sulfate waters would vary the proportion of sulfolipids (SLs) and betaine lipids (BLs), respectively. In phosphate‐enriched areas, periphyton would produce more phospholipids (PLs). We observed that at low‐P sites, PLs were a minor lipid component. In cyanobacteria‐dominated periphyton where sulfate was abundant, BLs were only slightly more abundant than SLs. However, in the low‐P, low‐sulfate area, periphyton were comprised to a greater degree green algae and diatoms, and BLs represented the majority of the total lipids. Even in a P‐rich area, PLs were a small component of periphyton lipid profiles. Despite the phosphorus limitations of the Everglades, periphyton can develop tremendous biomass. Our results suggest a physiological response by periphyton to oligotrophic conditions whereby periphyton increase abundances of nonphosphorus lipids and have reduced proportions of PLs.  相似文献   

14.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

15.
Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic 13C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on 13C uptake by periphyton. In the field experiment, P addition had a positive effect on 13C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, 13C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific 13C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific 13C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between 13C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community-wide effects on periphyton in boreal streams, with a subsequent increase in energy transfer and system productivity.  相似文献   

16.
Hann  B.J.  Mundy  C.J.  Goldsborough  L.G. 《Hydrobiologia》2001,457(1-3):167-175
This study examined the effects of nutrients and macrophytes on snail grazers and periphyton in a prairie wetland food web. Snails (Gyraulus circumstriatus) and periphyton in large enclosures in a lacustrine wetland, Delta Marsh, MB, Canada were subjected to two experimental treatments, nutrient addition (nitrogen, phosphorus) and macrophyte exclusion (using a porous geotextile carpet) during July and August. Snail biomass and periphyton biomass (on both artificial substrata and submerged macrophytes) increased over time in all treatments, representing seasonal growth. Snail biomass was three times higher on macrophytes than on artificial substrata. In response to nutrient addition, snail biomass was significantly elevated over time on macrophytes but not on artificial substrata. Conversely, periphyton biomass was higher on artificial substrata but not on macrophytes in response to nutrient addition. Snail biomass and periphyton biomass on artificial substrata showed no response to macrophyte exclusion. Snail biomass on all substrata was inversely correlated with turbidity, whereas periphyton biomass showed no relationship with turbidity. Timing of nutrient additions to wetlands may influence whether the response occurs primarily in phytoplankton or in periphyton and macrophytes.  相似文献   

17.
18.
This article aims to test the light-nutrient hypothesis (LNH) in a periphytic community in a tropical black-water lake. Individual and interactive effects of light and nutrient availability were assessed with periphyton biomass accrual, nutrient content, and nutrient stoichiometry. We performed a manipulative field experiment with a 4 × 2 factorial design. We used nutrient diffusing substrates to produce four different nutrients treatments: Control (no nutrient added), nitrogen amended (N), phosphorus amended (P) and combined N and P amendment (NP). Two light levels were also considered: high light (near surface water) and low light (near bottom water). Light and nutrients individually and interactively caused significant changes in aggregate periphyton community properties. Total and autotrophic biomasses were significantly higher in high light conditions and in nutrient enriched treatments. Autotrophic biomass was significantly higher in N enriched treatment whereas total biomass was mainly affected by the joint addition of N and P. At lower light availability periphyton growth was limited, even in enriched treatments. Light also strongly affected periphyton nutrient content. Periphyton C, N and P in general increased when subjected to high light conditions. As predicted by the LNH, light promoted an increase in periphyton C:P ratios in P deprived treatments, but an opposite effect was observed on C:N ratios, especially in N-enriched treatments. This experiment revealed that light availability strongly limits the propagation of nutrient effects on periphyton growth. Such complex interdependencies on basal resources affect the proportion of autotrophic to total periphytic biomass that can be an important mechanism to explain variation in the nutrient stoichiometry of periphyton in nature.  相似文献   

19.
20.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号