首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biotic interchange between geographic regions can promote rapid diversification. However, what are the important factors that determine the rate of diversification (e.g., trait‐dependent diversification) vary between study systems. The evolutionary history of Dynastes beetles, which can be found in both North and South Americas and exhibit two different altitudinal preferences (highland and lowland) is tested for the effects of biotic interchange between continents and different ecological preferences on the rate of species diversification. Additionally, the hypotheses of geological time‐dependent and lineage specific diversification rates are also tested. Results from this study indicate that in Dynastes beetles a pre‐landbridge dispersal hypothesis from South to North America is preferred and that the speciation rates estimated using BAMM are similar between lineages of different geographic origins and different altitudinal preferences (i.e., diversification rate is not trait‐dependent). On the other hand, my result from marcoevolutionary cohort analysis based on BAMM outputs suggests that the rate of speciation in Dynastes beetles is, instead of trait‐dependent (geographic and ecological), lineage specific. Furthermore, a steadily increasing speciation rate can be found in Pliocene and Pleistocene, which implies that geological and climatic events, i.e., colonizing North America, habitat reformation in the Amazonia, and forest contraction in Pleistocene, may have together shaped the current biodiversity pattern in Dynastes beetles.  相似文献   

2.
We surveyed the geographical variation in male advertisement calls of the wide‐ranging canyon treefrog, Hyla arenicolor, and found large call differences among geographically distant lineages that had been characterized by a recent phylogeographical study. To test whether these call differences were biologically relevant and could allow reproductive isolation of different lineages should they come into secondary contact, we assessed female preference in a lineage occurring in southern Utah and north‐western Arizona, USA. These females exhibited a strong preference for their own lineage's call type over the calls of two Mexican lineages, but not over the calls from the geographically nearest lineage. We also identified traits that female frogs probably use to discriminate between lineage‐specific advertisement calls. Our behavioural results, together with recent molecular estimates of phylogenetic relationships among lineages, will guide future work addressing the evolutionary forces that have led to this biologically significant variation in male sexual signals. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

3.
The lesser Egyptian jerboa Jaculus jaculus is a desert dwelling rodent that inhabits a broad Arabian–Saharan arid zone. Recently, two distant sympatric lineages were described in North‐West Africa, based on morphometric and molecular data, which may correspond to two cryptic species. In the current study, phylogenetic relationships and phylogeographical structure among those lineages and geographical populations from North Africa and the Middle East were investigated. The phylogeographical patterns and genetic diversity of the cytochrome b gene (1110 bp) were addressed on 111 jerboas from 41 localities. We found that the variation in Africa is partitioned into two divergent mitochondrial clades (10.5% divergence relating to 1.65–4.92 Mya) that corresponds to the two cryptic species: J. jaculus and J. deserti. Diversifications within those cryptic species/clades were dated to 0.23–1.13 Mya, suggesting that the Middle Pleistocene climatic change and its environmental consequences affected the evolutionary history of African jerboas. The third distant clade detected, found in the Middle East region, most likely represents a distinct evolutionary unit, independent of the two African lineages. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

4.
The distribution of genetic variation in Texas stream fishes has been shaped by a complex mix of historical and anthropogenic factors. Although Texas was not glaciated during the Pleistocene, the rise in sea level following this epoch isolated formerly connected drainages. More recently, the construction of dams, modifications of stream systems, and the release of commercially raised fish have influenced the patterns of genetic diversity. To examine how these different factors have impacted Texas stream fishes, we compared the genetic structure of five species of fish spanning two families and inhabiting two adjacent drainages: Lepomis megalotis, Lepomis cyanellus, Cyprinella lutrensis, Cyprinella venusta, and Campostoma anomalum. Our analyses of the mitochondrial D‐Loop show that genetic patterns differ strongly across species. A phylogeographical split between the Brazos and Trinity drainages was seen in conspecific populations of Lepomis species and is probably the result of the historical separation of these river systems. In contrast, contemporary ecological and anthropogenic factors, such as the desiccation of streams during summer, and the translocation of bait fish, appear to have a stronger influence on the genetic patterns in the remaining species. The contrasting results demonstrate the importance of using a multi‐species, comparative approach for landscape genetic studies as single species patterns may not be representative of others and thus may obscure differential effects of historical versus recent events as well as natural versus anthropogenic forces. By comparing closely related species that differ in their life history and economic importance it may be possible to disentangle the relative roles of historical, intrinsic, and anthropogenic influences on different organisms within a region. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

5.
We analyse the phylogeographical structure in the cave snail Georissa filiasaulae Haase & Schilthuizen, 2007 (Gastropoda: Hydrocenidae) and its above‐ground sister species G. saulae (van Benthem‐Jutting, 1966) at limestone outcrops in Sabah, Malaysian Borneo. Morphometric and 16S mitochondrial DNA data for some 220 individuals reveal strong morphological differentiation, despite ongoing unidirectional gene flow from the epigean into the hypogean environment, strong, small‐scale genetic structuring within the cave and underground dispersal between caves that were previously thought to be isolated. We discuss these results – which constitute the first phylogeographical analysis of a terrestrial cave snail – in the light of speciation in cave organisms and across ecotones in general. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 727–740.  相似文献   

6.
The worldwide distributed house mouse, Mus musculus, is subdivided into at least three lineages, Mus musculus musculus, Mus musculus domesticus, and Mus musculus castaneus. The subspecies occur parapatrically in a region considered to be the cradle of the species in Southern Asia (‘central region’), as well as in the rest of the world (‘peripheral region’). The morphological evolution of this species in a phylogeographical context is studied using a landmark‐based approach on mandible morphology of different populations of the three lineages. The morphological variation increases from central to peripheral regions at the population and subspecific levels, confirming a centrifugal sub‐speciation within this species. Furthermore, the outgroup comparison with sister species suggests that M. musculus musculus and populations of all subspecies inhabiting the Iranian plateau have retained a more ancestral mandible morphology, suggesting that this region may represent one of the relevant places of the origin of the species. Mus musculus castaneus, both from central and peripheral regions, is morphologically the most variable and divergent subspecies. Finally, the results obtained in the present study suggest that the independent evolution to commensalism in the three lineages is not accompanied by a convergence detectable on jaw morphology. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 635–647.  相似文献   

7.
The Quaternary biogeography of Anatolia has received considerable interest recently. Here, the genealogical history of the Anatolio?Balkan lineage of the Poecilimon luschani species group was evaluated. Using concatenated data from 16S rDNA and cytochrome c oxidase subunit I (COI) sequences, the timings of inter‐ and intraspecies radiations were estimated. The demographic history of the populations was estimated using a data set established from COI sequences. Genetic diversity was very high in almost all of the populations studied. Fixation indices suggested extreme divergence of P. luschani. A molecular chronogram estimated a radiation history for the species/subspecies over a period ranging from 1.323 to 0.440 Myr. Demographic analyses applied to 11 populations suggested departure in population size for most of the local populations. The following conclusions were reached: (1) P. luschani originated from an Anatolio‐Aegean ancestral stock and extended its range to the Balkans through Dardanelles during the Early Pleistocene; (2) the Mid‐Pleistocene Transition, the lengthening of glacial period from 41 to 100 Kyr and the initiation of intense glaciation periods are the three main events corresponding to the main nodes of the chronogram; (3) altitudinal heterogeneity played a buffer role during the glacial cycles, allowing populations to cope with severe environmental changes; (4) the effects of Pleistocene climate cycles on populations differ according to altitudinal and latitudinal location in Anatolia, and (5) habitat preferences, such as altitudinal range, may easily shift because of changes in environmental conditions. © 2014 The Linnean Society of London  相似文献   

8.
Discordant phylogeographical patterns among species with similar distributions may not only denote specific biogeographical histories of different species, but also could represent stochastic variance of genealogies in applied genetic markers. A multilocus investigation representing different genomes can be used to address the latter concern, allowing robust inference to biogeographical history. In the present study, we conducted a multilocus phylogeographical analysis to re‐examine the genetic structuring of Phyllodoce nipponica, in which chloroplast (cp)DNA markers exhibited a discordant pattern compared to those of other alpine plants. The geographical structure of sequence variation at five nuclear loci was not consistent with that of cpDNA and showed differentiation between the northern and southern parts of the range of this species. Its demographic history inferred from the isolation‐with‐migration model suggests that the north–south divergence originated from Pleistocene vicariance. In addition, the demographic parameters showed a lack of chloroplast‐specific gene flow, suggesting that stochastic variance in genealogy resulted in the discordant geographical structure. Thus, P. nipponica probably experienced Pleistocene vicariance between its southern and northern range parts in concordance with other alpine plants in the Japanese archipelago. The findings of the present study demonstrates the importance of using a multilocus approach for inferring population dynamics, as well as for reconciling discordant phylogeographical patterns among species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 214–226.  相似文献   

9.
One of the fundamental goals of phylogeographical studies should be to achieve a comprehensive geographical sampling of any investigated group. In this study, we conducted the most comprehensive geographical investigation to date for the great spotted woodpecker complex (Dendrocopos major), including populations from North Africa and Eurasia [including specimens from China, Japan and southern Caucasia (Anatolia, Azerbaijan and Iran)], in order to evaluate its genetic structure and population history. At the same time, we tested species limits within the D. major complex, which currently includes 14 recognized subspecies based on morphology and coloration. We based our study on haplotypes for the mitochondrial gene NADH dehydrogenase subunit 2 (ND2). Most haplotypes were obtained from museum toe pads, although we also used some previously published data. We also tested gene flow through MDIV, and estimated divergence dates among lineages using BEAST. The analysis of 352 base pairs of the ND2 gene from 155 individuals sampled from 33 populations showed significant phylogeographical structure across the breeding range. Our results found four distinct and reciprocally monophyletic clades: China, Japan, Iran–Azerbaijan and Eurasia–North Africa, with no phylogeographical structure within them. Coalescent‐based gene flow analysis showed restricted gene flow between China and Japan and between Japan and Eurasia. On the basis of the gene flow and phylogenetic analysis results, we propose the recognition of at least four different species within the complex. We also propose that, within the Eurasia–North Africa clade, a rapid population expansion through ‘leading edge expansion’ from refugia in Iberia, Kursk and North Africa, as well as irruptive and loop migration, can explain the lack of phylogeographical structure. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

10.
Aim Climatic fluctuations during the Pleistocene have shaped the population structure of many extant taxa. However, few studies have examined widespread species inhabiting the Australian continent, where periods of increased aridity characterized the Pleistocene. Here we investigate the phylogeography and population history of a widespread and vagile southern Australian marsupial, the western grey kangaroo (Macropus fuliginosus). Location Southern Australia. Methods We examined the variation of the mitochondrial DNA (mtDNA) control region from 511 individuals of M. fuliginosus sampled throughout their transcontinental distribution. Maximum likelihood and Bayesian analyses were used to investigate the phylogeography and coalescence analyses were then used to test hypothesized biogeographical scenarios. Results The combined results of the phylogeographical and coalescence analyses revealed a complex evolutionary history. Macropus fuliginosus originated in the south‐west of the continent, with north‐western and south‐western populations subsequently diverging as a result of vicariance events during the mid‐Pleistocene. Subsequent arid phases affected these populations differently. In the north‐west, the expansion and contraction of the arid zone resulted in repeated vicariance events and multiple divergent north‐western mtDNA subclades. In contrast, the south‐western population was less impacted by climatic oscillations but gave rise to a major transcontinental eastward expansion. Main conclusions Macropus fuliginosus exhibits the genetic signature of divergence due to unidentified barriers in south‐western Western Australia, while previously identified barriers across southern Australia appear to have had little impact despite evidence of a broad‐scale range expansion prior to the Last Glacial Maximum (LGM). This pattern of localized expansion and contraction is comparable to unglaciated regions in both the Northern and Southern Hemispheres. Furthermore, this study indicates that despite the potential similarities between Northern Hemisphere glaciation and the activation of dune systems in the Australian arid zone, both of which rendered large areas inhospitable, the biotic responses and resultant phylogeographical signatures are dissimilar. Whereas a limited number of major geographically concordant refugia are observed in glaciated areas, the Southern Hemisphere arid zone appears to be associated with multiple species‐specific idiosyncratic refugia.  相似文献   

11.
The effects of environmental change on fecundity and mortality rates of ancient populations are likely to have influenced extinction patterns and biogeographical range shifts. To test for a relationship between environmental change and palaeodemographical change, the mortality profiles of late Pleistocene muskrats (Ondatra zibethicus) from north Florida were compared with recent populations of the same species to assess the effect of the Pleistocene–Holocene transition on the demographics of this species, as well as a potential role in the extirpation of O. zibethicus in Florida during the Pleistocene–Holocene transition. At the older locality (Latvis‐Simpson: approximately 32 14C Ky BP), there is strong sedimentological evidence for late summer or autumn seasonal deposition. Most of the individuals in the youngest cohort were adults approximately 7 or 8 months old at death, suggesting that the breeding season had occurred in the fall or winter. This breeding schedule is similar to recent southern populations where breeding is most intense in the fall and winter, and unlike northern populations where breeding occurs in the spring. The inferred breeding seasonality is consistent with other evidence suggesting that the south‐east was warm and equable in the late Pleistocene. At the younger locality (Sloth Hole: approximately 12 14C Ky BP) muskrats exhibit faster dental wear and lower life expectancy, suggesting harsher conditions near the time of extirpation. Cooler temperatures, aridity, water table fluctuation, and human presence all comprise potential factors leading to a lower life expectancy during this time interval. The fossil record shows a potential for investigating links between climate change and the demographics of palaeopopulations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 41–56.  相似文献   

12.
Quedenfeldtia (Boettger, 1883) is a genus of diurnal geckos, endemic to the Atlas Mountains in Morocco, with two species being recognized: Quedenfeldtia moerens and Quedenfeldtia trachyblepharus. Quedenfeldtia moerens is found across a wide variety of habitats, from sea level to 3000 m a.s.l., whereas Q. trachyblepharus occupies exclusively high mountain regions reaching up to 4000 m a.s.l. This differentiation, offers an interesting model for study biogeographical patterns and evolutionary scenarios in a North African endemic. Analysis of two mitochondrial (12S rRNA and ND4) and four nuclear (ACM4, MC1R, PDC, and Rag1) DNA markers revealed high genetic variation, consistent with other recent phylogeographical studies, and with the two currently described species. However, within each species, a subdivision into two groups with geographical consistence was found. Multivariate morphological analyses confirmed the existence of two main phenotypes, whereas ecological niche modelling identified various environmental variables associated with the distribution of each species, and helped to predict occurrences outside the confirmed ranges. The results obtained in the present study indicate the possible existence of additional ‘cryptic’ species within this genus, a condition found in many North African reptiles, and particularly common in geckos. In general, North African montane fauna appears to reflect the occurrence of diverse palaeoendemics, as seen in Central Africa Mountain systems, rather than the pattern of recent postglacial recolonization observed in Europe. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

13.
Anogeissus dhofarica (Combretaceae) is an endemic tree of the monsoon affected coastal mountains of the southern Arabian Peninsula, being the character species of the Hybantho durae–Anogeissetum dhofaricae association, a drought deciduous, monsoon forest community found only in the Dhofar region of southern Oman and the eastern Al‐Mahra region of south‐east Yemen. Due to the steep precipitation gradient from the centre to the edges in this monsoon affected area, A. dhofarica is found in two different habitat types: in continuous woodland belts of the Hawf and Dhofar mountains, and in isolated, scattered woodland patches, as found especially in the Fartak Mts (south‐east Yemen). Fifteen populations (212 individuals) from across the whole distribution area of the species were analysed using amplified fragment length polymorphism fingerprinting to: (1) evaluate the consequences of population fragmentation on the genetic diversity harboured in isolated patches versus cohering stands of the species and (2) to reconstruct the phylogeographical pattern of A. dhofarica as a consequence of oscillations in the monsoon activity during the Pleistocene and Holocene. The analysis of among‐population genetic differentiation and within‐population genetic diversity in A. dhofarica populations resulted in a lack of genetic pauperization and genetic differentiation of populations of the distinctly isolated patches of the Fartak Mts compared to the more luxurious forests of the Hawf and Dhofar regions. This is considered to be due to the high buffer capacity against the loss of genetic diversity caused by the long‐lived life‐form of the species combined with the capability to propagate clonally and the relatively recent fragmentation of Anogeissus forests into the described patches rather than due to high values of gene flow among remnant populations caused by bee pollination and anemochorical and hydrochorical diaspore dispersal. The phylogeographical pattern of the species argues for a quite recent fragmentation of a once continuous forest belt of A. dhofarica that is rather connected with climate changes in the Holocene than triggered by aridity–humidity oscillations reported for the Pleistocene. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 40–51.  相似文献   

14.
Belonesox belizanus Kner (Teleostei: Poeciliidae) is a wide‐spread livebearing species that occurs on the Atlantic Slope of Central America from southern Mexico to northern Costa Rica. Previous work has noted morphological variation within the species, and recognized two subspecies: Belonesox belizanus belizanus and Belonesox belizanus maxillosus. We used 1122 bp of cytochrome b and 617 bp of S7‐1 DNA to conduct a phylogeographical study of Belonesox, aiming to examine the genetic distinctiveness of these taxa and other populations of Belonesox throughout the range. Bayesian phylogenetic and haplotype analyses indicated that B. b. maxillosus is not distinctive from other northern populations of Belonesox. However, a distinct phylogeographical break is evident near the Rio Grande in southern Belize. One clade comprises the putative B. b. maxillosus and all populations sampled north of the Rio Grande. The other clade comprises the Rio Grande and all populations south thereof. Fossil‐calibrated divergence time estimates suggest that isolation of the northern and southern lineages of Belonesox occurred approximately 14.1 Mya. The phylogeographical structure recovered in the present study is interesting, considering that relatively few studies have examined molecular variation across this portion of Middle America in a time‐calibrated framework. Furthermore, the present study suggests that more work is needed to adequately understand the factors that have shaped diversity of this region. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 848–860.  相似文献   

15.
In this study, we evaluated the genetic diversity of the Petunia integrifolia species group using a phylogeographical approach, and attempted to understand better its diversification and taxonomy. Plants from five morphological groups were collected, covering a large part of the geographical distribution of most of the species. Two major clades were found in the phylogenetic tree, and an additional lineage, corresponding to P. inflata, was found in the haplotype network obtained for plastid markers. All three lineages are clearly delimited geographically, but, with the exception of P. inflata, the morphological groups were not genetically distinct. Our results suggest that a population expansion after a size reduction resulted in the establishment of two distinct and allopatric groups c. 0.5 Mya, one group occurring in a geologically ancient area, and the other occurring in areas that were under the influence of a series of marine transgressions/regressions at the end of the Pleistocene. These two clades are evolutionarily significant units with significantly different allele frequencies in their nuclear genome and reciprocal monophyly in maternal, uniparentally inherited markers. All our results suggest that the morphology‐based taxonomy in this group does not reflect its evolutionary history, and revision of its species limits should incorporate the distribution of the genetic diversity. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 199–213.  相似文献   

16.
To explore the relationship between morphological change and species diversification, we reconstructed the evolutionary changes in skull size, skull shape, and body elongation in a monophyletic group of eight species that make up salamander genus Triturus. Their well‐studied phylogenetic relationships and the marked difference in ecological preferences among five species groups makes this genus an excellent model system for the study of morphological evolution. The study involved three‐dimensional imagery of the skull and the number of trunk vertebrae, in material that represents the morphological, spatial, and molecular diversity of the genus. Morphological change largely followed the pattern of descent. The reconstruction of ancestral skull shape indicated that morphological change was mostly confined to two episodes, corresponding to the ancestral lineage that all crested newts have in common and the Triturus dobrogicus lineage. When corrected for common descent, evolution of skull shape was correlated to change in skull size. Also, skull size and shape, as well as body shape, as inferred from the number of trunk vertebrae, were correlated, indicating a marked impact of species' ecological preferences on morphological evolution, accompanied by a series of niche shifts, with the most pronounced one in the T. dobrogicus lineage. The presence of phylogenetic signal and correlated evolutionary changes in skull and body shape suggested complex interplay of niche shifts, natural selection, and constraints by a common developmental system. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 243–255.  相似文献   

17.
Close affinities recognized between taxa in Mexico and the contiguous USA have led to a variety of biogeographical scenarios. One such hypothesis suggests that species that occur in both countries have an origin in central Mexico followed by dispersal into the USA. This study expands upon previous phylogeographical work of the ringneck snake Diadophis punctatus by incorporating new data from previously unsampled areas appropriate to critically assess hypotheses regarding a Mexican origin for this species. Maximum likelihood and maximum parsimony analyses inferred a derived position for the lineage from southern Mexico with constraint tests for alternate evolutionary hypotheses resulting in significantly worse likelihood values. Ancestral area reconstructions inferred an origin for D. punctatus in the south‐eastern USA followed by a south‐east to north‐east then westward directionality of historical migration. The position within the phylogeny and date estimate for the south‐western + Mexico clade suggests a recent invasion into central Mexico with expansion into the Nearctic/Neotropic transition zone. The extensive lineage diversity inferred from the mtDNA suggests that the genus is a complex of cryptic species whose conservational status should be re‐evaluated on both the national and regional levels. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 629–640.  相似文献   

18.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

19.
We quantify the population divergence processes that shaped population genetic structure in the Trans‐Volcanic bunchgrass lizard (Sceloporus bicanthalis) across the highlands of south‐eastern Mexico. Multilocus genetic data from nine nuclear loci and mitochondrial (mt)DNA were used to estimate the population divergence history for 47 samples of S. bicanthalis. Bayesian clustering methods partitioned S. bicanthalis into three populations: (1) a southern population in Oaxaca and southern Puebla; (2) a population in western Puebla; and (3) a northern population with a broad distribution across Hidalgo, Puebla, and Veracruz. The multilocus nuclear data and mtDNA both supported a Late Pleistocene increase in effective population size, and the nuclear data revealed low levels of unidirectional gene flow from the widespread northern population into the southern and western populations. Populations of S. bicanthalis experienced different demographic histories during the Pleistocene, and phylogeographical patterns were similar to those observed in many co‐distributed highland taxa. Although we recommend continuing to recognize S. bicanthalis as a single species, future research on the evolution of viviparity could gain novel insights by contrasting physiological and genomic patterns among the different populations located across the highlands of south‐eastern Mexico. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 852–865.  相似文献   

20.
Areas of sympatry and hybridization of closely related species can be difficult to assess through morphological differences alone. Species which coexist and are similar morphologically may be distinguished only with molecular techniques. The roe deer (Capreolus spp.) is a meso‐mammal having a Palaearctic distribution, with two closely related species: the European C. capreolus and the Siberian C. pygargus. We analysed mtDNA sequences from 245 individuals, sampled through all the entire range of the genus, to investigate the distribution of genetic lineages and outline phylogeographical patterns. We found that: (1) a C. pygargus lineage occurs in Poland and Lithuania, much farther west than the area which so far was believed its westernmost limit; (2) no haplotype of this C. pygargus lineage matches any found in East Europe and Asia – this should rule out human introductions and may indicate Pleistocene–Holocene migrations from the east; (3) no geographical structuring of C. pygargus lineages occurs, questioning the existence of putative subspecies; (4) several genetic lineages of C. capreolus can be recognized, consistent with the existence of two subspecies, respectively in central–southern Italy and southern Spain. Coalescence times suggest that intraspecific variation in C. capreolus and C. pygargus developed approximately 100–10 kya. The extant mitochondrial lineages pre‐dated the Last Glacial Maximum. Capreolus pygargus must have moved westward to Central Europe, where at least one genetic lineage still survives, coexisting with C. capreolus. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号