首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
1. The effects of long‐term nutrient addition at moderate levels were examined in the food web of a forested Mediterranean stream. Basal concentrations of N and P were increased twofold (to c. 750 μg N) and threefold (to c. 30 μg P) from ambient concentrations in an experimental reach. Variations in the abundance of microbes (bacteria and algae), meiofauna and macrofauna, microbial processing of organic matter (extracellular enzyme activities) and stoichiometry of biofilms and invertebrates were compared to an upstream control reach during 4 years of artificial nutrient enhancement. 2. Effects were faster in the bacterial compartment but more substantial in the algal compartment. Epilithic algal biomass doubled in the enriched section jointly triggered by nutrients and increased light irradiance in winter and early spring. Only a few animal groups reacted to the enrichment, including the meiofaunal Copepoda, linked to their high use of enriched FPOM, and macrofaunal grazers (Ancylus), which followed the large algal biomass increase. 3. The enrichment caused biofilm phosphatase activity to decrease, while activities related to the use of algal‐related materials (peptidase, β‐glucosidase) increased. Enzymatic activities related to the use of allochthonous organic matter showed only minor and episodic increases. 4. Changes in stoichiometric ratios were apparent in the epilithic compartment, but not in the sand sediment or in the FPOM. Increases in P content were delayed for 9 months in epilithic biofilms and for nearly 2 years in the case of N. 5. After 2 years of enrichment, the flatworm Schmidtea polychroa (predator), oligochaetes (detritivore) and tadpoles of Bufo bufo (grazer) showed higher per cent N. 6. Enrichment effects were produced in spite of flow cessations that occurred commonly in summer. The results show that forested streams subjected to sustained (though minor) nutrient enrichment changed aspects of their biological structure and metabolism and that changes were especially favoured by periods when light was not limiting.  相似文献   

2.
3.
1. The ciliate and metazoan meiofaunal assemblages of two contrasting lowland streams in south‐east England were examined over the period of a year, using a high taxonomic resolution. Monthly samples were taken from an oligotrophic, acid stream (Lone Oak) and a circumneutral, nutrient‐rich stream (Pant) between March 2003 and February 2004. 2. We assessed the relative importance of ciliates and rotifers within the small‐sized benthic assemblage with respect to their abundance, biomass and species richness. In addition, we examined the influence of abiotic and biotic parameters and season on the assemblage composition at two levels of taxonomic resolution (species and groups). 3. Ciliates dominated the assemblages numerically, with maximum densities of over 900 000 and 6 000 000 ind. m?2 in Lone Oak and Pant respectively. Rotifers and nematodes dominated meiofaunal densities, although their contribution to total meiofaunal biomass (maxima of 71.9 mgC m?2 in Lone Oak and of 646.8 mgC m?2 in the Pant) was low and rotifer biomass equalled that of ciliates. 4. Although the two streams differed in terms of total abundance of ciliates and meiofauna and shared only 7% of species, the relative proportion of groups was similar. Sediment grain size distribution (the percentile representing the 0.5–1 mm fraction) was correlated with assemblage structure at the species level, revealing the tight coupling between these small organisms and their physical environment. Seasonal changes in the relative abundance of groups followed similar patterns in both streams, and were correlated with the abundance of cyclopoid copepods and temperature. 5. Information on these highly abundant but often overlooked faunal groups is essential for estimates of overall abundance, biomass, species richness and productivity in the benthos, and as such has important implications for several areas of aquatic research, e.g. for those dealing with trophic dynamics.  相似文献   

4.
1. We measured responses in macroinvertebrate secondary production after large wood additions to three forested headwater streams in the Upper Peninsula of Michigan. These streams had fine‐grained sediments and low retention capacity due to low amounts of in‐channel wood from a legacy of past logging. We predicted that wood addition would increase macroinvertebrate secondary production by increasing exposed coarse substrate and retention of organic matter. 2. Large wood (25 logs) was added haphazardly to a 100‐m reach in each stream, and a 100‐m upstream reach served as control; each reach was sampled monthly, 1 year before and 2 years after wood addition (i.e. BACI design). Macroinvertebrate secondary production was measured 1 year after wood addition in two habitat types: inorganic sediments of the main channel and debris accumulations of leaf litter and small wood. 3. Overall macroinvertebrate production did not change significantly because each stream responded differently to wood addition. Production increased by 22% in the main‐channel of one stream, and showed insignificant changes in the other two streams compared to values before wood addition. Changes in main‐channel macroinvertebrate production were related to small changes in substrate composition, which probably affected habitat and periphyton abundance. Macroinvertebrate production was much greater in debris accumulations than in the main‐channel, indicating the potential for increased retention of leaf litter to increase overall macroinvertebrate production, especially in autumn. 4. Surrounding land use, substrate composition, temperature and method of log placement are variables that interact to influence the response of stream biota to wood additions. In most studies, wood additions occur in altered catchments, are rarely monitored, and secondary production is not a common metric. Our results suggest that the time required for measurable changes in geomorphology, organic matter retention, or invertebrate production is likely to take years to achieve, so monitoring should span more than 5 years, and ecosystem metrics, such as macroinvertebrate secondary production, should be incorporated into restoration monitoring programs.  相似文献   

5.
Eutrophication of coastal waters often leads to excessive growth of microalgal epiphytes attached to seagrass leaves; however, the effect of increased nutrient levels on sediment microalgae has not been studied within seagrass communities. A slow‐release NPK Osmocote fertilizer was added to sediments within and outside beds of the shoal grass Halodule wrightii, in Big Lagoon, Perdido Key, Florida. Gross primary production (GPP) and biomass (HPLC photopigments) of sediment microalgae within and adjacent to fertilized and control H. wrightii beds were measured following two 4‐week enrichment periods during June and July 2004. There was no effect of position on sediment microalgal GPP or biomass in control and enriched plots. However, nutrient enrichment significantly increased GPP in both June and July. These results suggest that sediment microalgae could fill some of the void in primary production where seagrass beds disappear due to excessive nutrient enrichment. Sedimentary chl a (proxy of total microalgal biomass) significantly increased only during the June enrichment period, whereas fucoxanthin (proxy of total diatom biomass) was not increased by nutrient enrichment even though its concentration doubled in the enriched plots in June.  相似文献   

6.
Abstract. A cross‐over fertilization experiment was carried out in Dutch floating fens to investigate effects on biomass production in the same and the following years. In total 16 fertilizer treatments were applied, combining four treatments in 1999 with four treatments in 2000 (addition of 20 g.m?2 N, 5 g.m?2 P, both elements and unfertilized control). The above‐ground biomass production of vascular plants was co‐limited by N and P in both years. However, in plots that were only fertilized in 1999 the effects of individual nutrients differed between the two years: N‐fertilization slightly increased the amount of biomass produced in the same year (1999), whereas P‐fertilization did so in the following year (2000). Fertilizer applied in 1999 also influenced the effects of fertilizer applied in 2000. One year after N‐fertilization vascular plant growth was still co‐limited by N and P, but one year after P‐fertilization, vascular plant growth was only limited by N. Bryophyte biomass responded weakly to fertilization. Nutrient concentrations in plant biomass, nutrient standing crops and measurements of N and P availability in the soil indicated that one year after fertilization, the N‐fertilizer had mostly ‘disappeared’ from N‐fertilized plots, whereas the availability of P remained markedly enhanced in P‐fertilized plots. In addition, P‐fertilization enhanced the uptake of N by plants the following year. The time‐dependence of fertilizer effects was probably caused by (1) higher addition of P than of N relative to the requirements of plants; (2) longer retention of P than of N in the system; (3) positive effect of P‐fertilization on the availability of N; (4) contrasting effects of N‐ and P‐fertilization on nutrient losses by plants and/or on their responses to subsequent nutrient addition; (5) changing interactions between vascular plants and mosses (mainly Sphagnum spp.); (6) nutrient export through the repeated harvest of above‐ground biomass. To determine which nutrient limits plant growth fertilization experiments should be short, avoiding that indirect effects of a non‐limiting nutrient influence results. To indicate how changed nutrient supply will affect an ecosystem longer‐term experiments are needed, so that indirect effects have time to develop and be detected.  相似文献   

7.
1. We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3‐year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1‐year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a reference. We determined the effects of enrichment on both wood veneers and sticks, which have similar carbon quality but differ in physical characteristics (e.g. surface area to volume ratios, presence of bark) that potentially affect microbial colonisation and activity. 2. Oak wood veneers (0.5 mm thick) were placed in streams monthly and allowed to decompose for approximately 90 days. Nutrient addition stimulated ash‐free dry mass loss and increased mean nitrogen content, fungal biomass and microbial respiration on veneers in the treatment stream compared with the reference. The magnitude of the response to enrichment was great, with mass loss 6.1 times, and per cent N, fungal biomass and microbial respiration approximately four times greater in the treatment versus reference stream. 3. Decomposition rate and nitrogen content of maple sticks (ca. 1–2 cm diameter) also increased; however, the effect was less pronounced than for veneers. Wood response overall was greater than that determined for leaves in a comparable study, supporting the hypothesis that response to enrichment may be greater for lower quality organic matter (high C : N) than for higher quality (low C : N) substrates. 4. Our results show that moderate nutrient enrichment can profoundly affect decomposition rate and microbial activity on wood in streams. Thus, the timing and availability of wood that provides retention, structure, attachment sites and food in stream ecosystems may be affected by nutrient concentrations raised by human activities.  相似文献   

8.
1. The effects of eutrophication on phytoplankton, zooplankton and fish in lakes are well known. By contrast, little is known about the response of the zoobenthos to nutrient enrichment, while smaller organisms, such as the meiofauna, have for the most part been neglected. 2. In a long‐term (16 months) microcosm experiment, we assessed the effects of five levels of nutrients [total phosphorus (TP), 7–250 μg L?1; nitrate, 2–8 mg L?1] on a freshwater meiofaunal assemblage and on nematode diversity in particular. 3. Within the first 8 months, meiofaunal succession was only weakly affected, whereas, during the last 4 months, nutrient addition influenced most of the main taxa, with a concomitant change in the assemblage structure. 4. The density of the numerically dominant nematodes decreased upon nutrient enrichment, whereas ostracods became more numerous. Other taxa, including copepods, reached a maximum at intermediate nutrient levels or, in case of oligochaetes, were almost unaffected by nutrient enrichment. However, the changes in the density of the main taxa were usually insufficient to alter their biomass. Consequently, meiofaunal biomass was remarkably unresponsive to nutrient addition, while meiofaunal density displayed a unimodal relationship, with a peak at a TP concentration of 30 μg L?1. In addition, nematode species richness decreased significantly with increasing nutrient concentrations. 5. We hypothesise that the response of meiofaunal taxa to nutrients is attributable to the development of primary producers, which shifted with enrichment from low densities of edible diatoms and unicellular green algae to large standing stocks of inedible forms, such as Lemna minor and Cladophora spp.  相似文献   

9.
Abstract Net primary production (NPP) and nutrient dynamics of grasslands are regulated by different biotic and abiotic factors, which may differentially affect functional plant groups. Most studies have dealt with grasslands that have extremely low or zero production over a significant period of the year. Here we explore the relative importance of a few environmental factors as controls of aerial and below‐ground plant biomass production and nutrient dynamics in a grassland that is active throughout the year. We investigate their effect on the response of three main plant functional groups (warm‐ and cool‐season graminoids and forbs). We conducted a factorial experiment in a continuously grazed site in the Flooding Pampa grassland (Argentina). Factors were seasons (summer, autumn, winter and spring), and environmental agents (mowing, shade, addition of phosphorus [P] and nitrogen [N]). N addition had the largest and most extended impact: it tripled aerial NPP in spring and summer but had no effect on below‐ground biomass. This positive effect was accompanied by higher N acquisition and higher soil N availability. Mowing increased aerial NPP in winter, increased root biomass in the first 10 cm during autumn and winter and promoted N and P uptake by plants. Shading did not affect aerial NPP, but stimulated N and P uptake by plants. P addition had no effect on aerial NPP, but increased shallow root biomass and its N content in spring, and tripled P accumulation in plant biomass. The three plant functional groups differentially accounted for these ecosystem‐level responses. Graminoids explained the greater biomass production of N‐fertilized plots and mowing tended to promote forbs. These results suggest that the environmental controls of aerial NPP in this grassland vary among seasons, differentially impact the major floristic groups, and affect the energy and nutrient transfer to herbivores.  相似文献   

10.
Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream   总被引:1,自引:0,他引:1  
1. Biofilm biomass and metabolism were analysed in La Solana, a calcareous, undisturbed second-order stream. Measurements were carried out in two Mediterranean climatic extremes, summer and winter. Two on-site experimental channels were used to study changes following nutrient addition to one of them. 2. Algal biomass (chlorophyll a), NDPP (net daily primary production), GDPP (gross daily primary production) and R (respiration) increased in the enriched channel, and these increases were greater in summer. 3. Photosynthetic capacity (Pmaxchl) decreased during summer, possibly due to enhanced self-shading accompanying the increase in biomass. 4. In winter, Pmaxchl increased and reached values similar to those in the summer control channel. Because grazing was low, the higher values of Pmaxchl were attributed to partial substitution of the cyanobacterial assemblage by a green-algae dominated assemblage with higher photosynthetic capacity as well as the low increase in biomass preventing any significant self-shading.  相似文献   

11.
Plants and animals influence biomass production and nutrient cycling in terrestrial ecosystems; however, their relative importance remains unclear. We assessed the extent to which mega‐herbivore species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Britain and Ireland, when two‐thirds of the region's mega‐herbivore species went extinct. Warmer temperatures, plant–soil and plant–plant interactions, and reduced burning contributed to the expansion of woody plants and declining nitrogen availability in our five study ecosystems. Shrub biomass was consistently one of the strongest predictors of ecosystem change, equalling or exceeding the effects of other biotic and abiotic factors. In contrast, there was relatively little evidence for mega‐herbivore control on plant community composition and nitrogen availability. The ability of plants to determine the fate of terrestrial ecosystems during periods of global environmental change may therefore be greater than previously thought.  相似文献   

12.
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass.  相似文献   

13.
1. Primary production and respiration in streams, collectively referred to as stream ecosystem metabolism, are fundamental processes that determine trophic structure, biomass and nutrient cycling. Few studies have used high‐frequency measurements of gross primary production (GPP) and ecosystem respiration (ER) over extended periods to characterise the factors that control stream ecosystem metabolism at hourly, daily, seasonal and annual scales. 2. We measured ecosystem metabolism at 5‐min intervals for 23 months in Shepherd Creek, a small suburban stream in Cincinnati, Ohio (U.S.A.). 3. Daily GPP was best predicted by a model containing light and its synergistic interaction with water temperature. Water temperature alone was not significantly related to daily GPP, rather high temperatures enhanced the capacity of autotrophs to use available light. 4. The relationship between GPP and light was further explored using photosynthesis–irradiance curves (P–I curves). Light saturation of GPP was evident throughout the winter and spring and the P–I curve frequently exhibited strong counterclockwise hysteresis. Hysteresis occurred when water temperatures were greater in the afternoon than in the morning, although light was similar, further suggesting that light availability interacts synergistically with water temperature. 5. Storm flows strongly depressed GPP in the spring while desiccation arrested aquatic GPP and ER in late summer and autumn. 6. Ecosystem respiration was best predicted by GPP, water temperature and the rate of water exchange between the surface channel and transient storage zones. We estimate that c. 70% of newly fixed carbon was immediately respired by autotrophs and closely associated heterotrophs. 7. Interannual, seasonal, daily and hourly variability in ecosystem metabolism was attributable to a combination of light availability, water temperature, storm flow dynamics and desiccation. Human activities affect all these factors in urban and suburban streams, suggesting stream ecosystem processes are likely to respond in complex ways to changing land use and climate.  相似文献   

14.
15.
1. The increase of species richness with the area of the habitat sampled, that is the species–area relationship, and its temporal analogue, the species–time relationship (STR), are among the few general laws in ecology with strong conservation implications. However, these two scale‐dependent phenomena have rarely been considered together in biodiversity assessment, especially in freshwater systems. 2. We examined how the spatial scale of sampling influences STRs for a Central‐European stream fish assemblage (second‐order Bernecei stream, Hungary) using field survey data in two simulation‐based experiments. 3. In experiment one, we examined how increasing the number of channel units, such as riffles and pools (13 altogether), and the number of field surveys involved in the analyses (12 sampling occasions during 3 years), influence species richness. Complete nested curves were constructed to quantify how many species one observes in the community on average for a given number of sampling occasions at a given spatial scale. 4. In experiment two, we examined STRs for the Bernecei fish assemblage from a landscape perspective. Here, we evaluated a 10‐year reach level data set (2000–09) for the Bernecei stream and its recipient watercourse (third‐order Kemence stream) to complement results on experiment one and to explore the mechanisms behind the observed patterns in more detail. 5. Experiment one indicated the strong influence of the spatial scale of sampling on the accumulation of species richness, although time clearly had an additional effect. The simulation methodology advocated here helped to estimate the number of species in a diverse combination of spatial and temporal scale and, therefore, to determine how different scale combinations influence sampling sufficiency. 6. Experiment two revealed differences in STRs between the upstream (Bernecei) and downstream (Kemence) sites, with steeper curves for the downstream site. Equations of STR curves were within the range observed in other studies, predominantly from terrestrial systems. Assemblage composition data suggested that extinction–colonisation dynamics of rare, non‐resident (i.e. satellite) species influenced patterns in STRs. 7. Our results highlight that the determination of species richness can benefit from the joint consideration of spatial and temporal scales in biodiversity inventory surveys. Additionally, we reveal how our randomisation‐based methodology may help to quantify the scale dependency of diversity components (α, β, γ) in both space and time, which have critical importance in the applied context.  相似文献   

16.
We examined the importance of temporal variability in top–down and bottom–up effects on the accumulation of stream periphyton, which are complex associations of autotrophic and heterotrophic microorganisms. Periphyton contributes to primary production and nutrient cycling and serves as a food resource for herbivores (grazers). Periphyton growth is often limited by the availability of nitrogen and phosphorus, and biomass can be controlled by grazers. In this study we experimentally manipulated nutrients and grazers simultaneously to determine the relative contribution of bottom–up and top–down controls on periphyton over time. We used nutrient diffusing substrates to regulate nutrient concentrations and an underwater electric field to exclude grazing insects in three sequential 16–17 day experiments from August to October in montane Colorado, USA. We measured algal biomass, periphyton organic mass, and algal community composition in each experiment and determined densities of streambed insect species, including grazers. Phosphorus was the primary limiting nutrient for algal biomass, but it did not influence periphyton organic mass across all experiments. Effects of nutrient additions on algal biomass and community composition decreased between August and October. Grazed substrates supported reduced periphyton biomass only in the first experiment, corresponding to high benthic abundances of a dominant mayfly grazer (Rhithrogena spp.). Grazed substrates in the first experiment also showed altered algal community composition with reduced diatom relative abundances, presumably in response to selective grazing. We showed that top–down grazing effects were strongest in late summer when grazers were abundant. The effects of phosphorus additions on algal biomass likely decreased over time because temperature became more limiting to growth than nutrients, and because reduced current velocity decreased nutrient uptake rates. These results suggest that investigators should proceed with caution when extending findings based on short‐term experiments. Furthermore, these results support the need for additional seasonal‐scale field research in stream ecology.  相似文献   

17.
1. Channel complexity affects the physical structure, biotic communities and functioning of stream ecosystems. Large wood (LW) is a key element in the creation and maintenance of physically complex stream channels in forested areas. 2. In an attempt to enhance stream habitat quality and ecosystem functioning and to reduce inputs of organic matter to a downstream reservoir, LW was experimentally introduced into four mountain streams in the Basque Country (northern Spain), ranging in channel width from 3 to 13 m. Following a before–after/control–impact (BACI) design, streams were monitored during 1 year prior to wood addition and during 2 years after addition in one control and one experimental reach per stream. 3. Areal cover of benthic organic matter in the entire channel was measured from regular transects and the mass of stored organic matter from random Surber samples. Breakdown of organic matter was assessed in litter bag experiments performed with black alder leaves. When 50% of the initial mass in the bags remained, invertebrates associated with leaf bags were collected. 4. Wood placement produced a 2‐ to 70‐fold increase in the storage of organic matter, especially in thick deposits upstream from wood jams, with values in excess of 2 kg AFDM per m2 in the small streams. The accumulation of organic matter produced by wood introduction decreased with increasing stream size. 5. Despite the large increase in the availability of organic matter, litter breakdown rates were unaffected by the experimental reaches, suggesting large increases in the total amount of organic matter consumed at the reach scale. 6. Numbers of invertebrates and shredders per gram of leaf litter did not respond to wood addition. Average body mass of invertebrates associated with leaf litter showed a non‐significant decreasing trend, which might reflect increased recruitment. 7. Although the effects of wood addition can depend on wood stability and stream size, adding LW to restore channel complexity can improve environmental conditions for invertebrate communities and affect stream ecosystem functioning, enhancing the efficiency to use organic matter inputs on a reach scale.  相似文献   

18.
19.
A simple bottom–up hypothesis predicts that plant responses to nutrient addition should determine the response of consumers: more productive and less diverse plant communities, the usual result of long‐term nutrient addition, should support greater consumer abundances and biomass and less consumer diversity. We tested this hypothesis for the response of an aboveground arthropod community to an uncommonly long‐term (24‐year) nutrient addition experiment in moist acidic tundra in arctic Alaska. This experiment altered plant community composition, decreased plant diversity and increased plant production and biomass as a deciduous shrub, Betula nana, became dominant. Consistent with strong effects on the plant community, nutrient addition altered arthropod community composition, primarily through changes to herbivore taxa in the canopy‐dwelling arthropod assemblage and detritivore taxa in the ground assemblage. Surprisingly, however, the loss of more than half of plant species was accompanied by negligible changes to diversity (rarefied richness) of arthropod taxa (which were primarily identified to family). Similarly, although long‐term nutrient addition in this system roughly doubles plant production and biomass, arthropod abundance was either unchanged or decreased by nutrient addition, and total arthropod biomass was unaffected. Our findings differ markedly from the handful of terrestrial studies that have found bottom‐up diversity cascades and productivity responses by consumers to nutrient addition. This is probably because unlike grasslands and salt marshes (where such studies have historically been conducted), this arctic tundra community becomes less palatable, rather than more so, after many years of nutrient addition due to increased dominance of B. nana. Additionally, by displacing insulating mosses and increasing the cover of shrubs that cool and shade the canopy microenvironment, fertilization may displace arthropods keenly attuned to microclimate. These results indicate that terrestrial arthropod assemblages may be more constrained by producer traits (i.e. palatability, structure) than they are by total primary production or producer diversity.  相似文献   

20.
Eutrophication in streams often results in enhanced decomposition rates and chemical conditions that greatly affect the suitability of the habitat for many species. We performed an enrichment experiment in a 50-m reach of a Mediterranean stream by the continuous addition of N and P (enriched reach) while another consecutive reach upstream served as the reference (unenriched reach). After 1.5 years of enrichment, conidia production and species composition of aquatic hyphomycetes were measured in communities colonizing four streambed substrata (Platanus acerifolia and Populus nigra leaves, epipsammic and epilithic biofilms). Samples collected from the two reaches were subjected to two nutrient treatments in the laboratory [low nutrient (−NP) and high nutrient (+NP) concentrations] to test for short-term (48 h) nutrient effects. Long-term nutrient additions did not affect potential sporulation rates while short-term nutrient enrichment produced insignificant increase in these rates on most substrata collected in the unenriched reach. Major differences in potential sporulation rates were observed between substrata, the highest rate being for leaves (especially Platanus acerifolia). However, enrichment produced significant changes in fungal community composition. Clavariopsis aquatica, Alatospora acuminata and Lemonniera sp. were dominant in the enriched reach while Heliscella stellata, Trisceloporus acuminatus and Clavatospora longibrachiata were characteristic of the unenriched reach. Our results suggest that fungal N demands can be fulfilled at relatively low levels of dissolved nitrate and further increases in the nutrients availability may not result in enhanced fungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号