首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Naupactini (Curculionidae: Entiminae) is a primarily Neotropical tribe of broad‐nosed weevils with its highest genus and species diversity in South America. Despite several taxonomic contributions published during the last decades, the evolutionary history of Naupactini remains poorly understood. We present the first comprehensive phylogenetic analysis for this tribe based on a data matrix of 100 adult morphological characters scored for 70 species, representing 55 genera of Naupactini (ingroup) and four outgroups belonging to the entimine tribes Otiorhynchini, Entimini, Eustylini and Tanymecini. According to the most parsimonious tree Artipus does not belong to Naupactini; the genera with flat and broad antennae, formerly assigned to other entimine tribes, form a monophyletic group (Saurops (Curiades (Aptolemus (Platyomus)))) related to the clade (Megalostylus (Megalostylodes (Chamaelops Wagneriella))); and the genera distributed along the high Andes, Paramos and Puna form a natural group (Asymmathetes (Amphideritus (Leschenius (Amitrus (Obrieniolus (Melanocyphus Trichocyphus)))))), nested within a larger clade that includes Pantomorus, Naupactus and allied genera. Atrichonotus, Hoplopactus, Mimographus and Naupactus are not recovered as monophyletic. In order to address the taxonomic implications of our phylogenetic analysis, we propose the following nomenclatural changes: to transfer Artipus from Naupactini to Geonemini, to revalidate the genera Mimographopsis (type species M. viridicans), and to revalidate the genus Floresianus (type species F. sordidus). The evolution of selected characters is discussed. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:C8AA4388‐A2F0‐4E2D‐889A‐500BEA5A9DE1 .  相似文献   

2.
A molecular phylogeny and lineage age estimates are presented for the Macaronesian representatives of the weevil subfamily Cryptorhynchinae, using two mitochondrial genes (cytochrome c oxidase subunit 1 and 16S). The Bayesian reconstruction is supplemented by observations on morphology, ecology, and reproductive biology. The present study often corroborates the groups previously outlined in higher‐level informal taxonomies. These and further groups are now assigned new taxonomic status. The following genera and subgenera are described (formerly Acalles): Aeoniacalles gen. nov. , Canariacalles gen. nov. , Ficusacalles gen. nov. , Madeiracalles gen. nov. , Silvacalles gen. nov. (with Tolpiacalles subgen. nov. , Tagasastacalles subgen. nov. ), Sonchiacalles gen. nov. , Echiumacalles gen. nov. (monotypic), Lauriacalles gen. nov. (monotypic), and Pseudodichromacalles gen. nov. (monotypic; formerly Dichromacalles). For the western Palaearctic genus Acalles Schoenherr, 1825 the first subgenus Origoacalles subgen. nov. is described and for the genus Onyxacalles Stüben, 1999 the first subgenus Araneacalles subgen. nov. ; Paratorneuma Roudier 1956 resyn. Except for one species of Acalles (Origoacalles), all of these new higher taxa are endemic to the Macaronesian Islands. All new taxa are presented, together with their host plants and further data, in a synoptic tabular overview. Based on the results of our phylogenetic analysis, we advocate the hypothesis that the evolution of the species in the new genera (of which most group into a ‘Macaronesian clade’) began in the comparatively arid succulent bush zone and that the shady and humid laurel forest of the thermo‐Canarian and thermo‐Madeiran zone was entered much later. Our reconstruction implies that the Canarian and Madeiran archipelagos were colonized by Cryptorhynchinae at least seven times from the continent but saw only one considerable adaptive radiation. It also becomes apparent that it is the ancestor species of the genus Canariacalles– and not Pseudodichromacalles– that features a close connection to the south‐western European and north‐western African species of Dichromacalles s.s. Finally, a key is presented for all genera and subgenera of the Macaronesian Cryptorhynchinae. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 40–87.  相似文献   

3.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   

4.
The Pantomorus–Naupactus complex is a Neotropical group of broad‐nosed weevils (Coleoptera: Curculionidae) including several parthenogenetic species usually assigned to the genera Naupactus Dejean, Pantomorus Schoenherr, Asynonychus Crotch, Aramigus Horn, Eurymetopus Schoenherr and Graphognathus Buchanan. Sixteen species were studied to test hypotheses on the monophyly of these genera, and on the origin of the parthenogenetic lineages. A matrix of 30 morphological characters and 999 positions of the Cytochrome Oxidase I gene, was analyzed with separate partitions and simultaneously, under equal and implied weights, and with different transversion/transitions costs. The ILD test indicates that the incongruence between the molecular and morphological data is not significant. Under equal weights, the molecular data resulted in a single tree and morphology in 34 trees; under implied weights morphology gave a different tree, and under TV:TS ≥ 4:1 molecular and combined analyses resulted in the same optimal tree. According to the latter, Naupactus includes Graphognathus, and is thus paraphyletic and basal regarding remaining genera, Pantomorus is polyphyletic and includes Aramigus and Asynonychus, and Eurymetopus is monophyletic. The species in which apomictic parthenogenesis has been verified (Aramigus tessellatus, Asynonychus cervinus and Graphognathus lecuoloma), belong to different clades of the Pantomorus‐Naupactus complex, with basal sexual relatives. © The Willi Hennig Society 2005.  相似文献   

5.
Amongst the most significant metazoan taxa associated with gastropod molluscs is the endoparasitic copepod family Splanchnotrophidae. Currently it contains five genera with highly modified morphology and exclusively infesting nudibranch and sacoglossan sea slug hosts. The present study is a first approach towards reconstructing their phylogeny and evolution. Cladistic analysis of 109 morphological characters including 24 known splanchnotrophid species resulted in a fully resolved strict consensus tree that is discussed in morphological, functional, and geographical frameworks. Alternative topologies are also explored. Originating from paraphyletic Philoblennidae, the Splanchnotrophidae emerge as sister group to the genus Briarella. Unique synapomorphies, such as the bizarre body shapes and successive reduction of mouthparts, are discussed as adaptive traits to endoparasitism that evolved only once within copepods infesting shell‐less heterobranch gastropods. The ancestrally Indo‐Pacific Splanchnotrophidae split up into a clade of the still Indo‐Pacific genera Ceratosomicola and Arthurius, sister to a clade composed of the monophyletic amphi‐American genus Ismaila and European Splanchnotrophus emerging from paraphyletic Lomanoticola. Although initial radiation of Briarella and Splanchnotrophidae is likely to have involved chromodoridid nudibranch hosts, later phylogenies of parasites and their hosts are incongruent; intriguingly, host shifts from nudibranch to only distantly related sacoglossan species occurred at least two times independently. Such remarkable ecological plasticity is assumed to have driven splanchnotrophid diversification. Topological hypotheses and historical biogeographical and evolutionary scenarios inferred herein can be tested by future molecular research. © 2013 The Linnean Society of London  相似文献   

6.
A phylogenetic analysis of the leafhopper genus Apogonalia was conducted based on a matrix of 40 terminal taxa and 147 morphological characters. The analysis yielded 1391 equally most‐parsimonious trees, which do not support the monophyly of Apogonalia in the strict consensus. A successive weighting procedure yielded 62 trees in which the genus appeared as a monophyletic group. The strict consensus of these 62 trees is almost entirely dichotomous, showing only two polytomies. The test of phylogenetic integrity was applied for distinct variations of three species: A. germana, A. sanguinipes, and A. histrio. Only for the first species was the conjecture that its variations belong to the same entity corroborated. The best‐supported clade within Apogonalia, which has several synapomorphies and high branch support indices, comprises nine Antillean endemic species. This distributional pattern probably was originated by vicariance in the Late Cretaceous, when the Proto‐Antillean archipelago was pushed north‐eastward by the Caribbean Plate to become the modern Greater Antilles. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 548–570.  相似文献   

7.
8.
9.
Rice rats (Sigmodontinae: Oryzomyini) are abundant in the Late Quaternary fossil record and in Holocene pre‐Columbian archaeological middens across the Lesser Antilles. All of these rice rats are now extinct, and their regional diversity and systematics remain extremely poorly understood. We redescribe all of the region's rice rat taxa known from adequate diagnostic material (Megalomys desmarestii, Megalomys luciae, and Oligoryzomys victus), and describe a new genus and species, Pennatomys nivalis gen. et sp. nov. , from archaeological sites on St. Eustatius, St. Kitts, and Nevis, which formed a single larger island during Quaternary low sea‐level stands. Cladistic analysis supports the inclusion of O. victus within Oligoryzomys, and identifies Megalomys as a sister group of the large‐bodied genera Sigmodontomys or Sigmodontomys + Nectomys, suggesting that large body size in Megalomys represents phyletic gigantism rather than ‘island gigantism’. Megalomys and Pennatomys belong to an oryzomyine clade that has undergone remarkable radiation throughout the oceanic and continental‐shelf islands of the Neotropical region, but these genera do not represent a monophyletic group within the Nectomys subclade, indicating multiple over‐water colonization events of the Lesser Antillean island chain. Although Lesser Antillean rice rats were heavily exploited by prehistoric Amerindians, it is likely that most or all of these taxa survived until European arrival in the region. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 748–772.  相似文献   

10.
The four living genera of Ctenodactylidae (Rodentia) are the only survivors of a flourishing Tertiary group. In this paper, we describe a new Oligocene species from Ulantatal (Chinese Mongolia) that highlights the origins of crown ctenodactylids. This species, Helanshania deserta gen. et sp. nov. , is lophodont and displays semi‐hypsodont teeth, a dental pattern that is somewhat transitional between that of primitive Oligocene ctenodactylids and the later hypsodont genera. We perform here a cladistic assessment of the dental evidence for species produced by the successive radiations of the group. In order to get new data, to decipher homologies for the dental pattern of modern ctenodactylids, and to specify their dental replacement, we describe additional dental material of Ctenodactylus, Massoutiera, and Felovia. The phylogenetic analysis (using PAUP) considered 45 characters (mainly dental) and 31 species. The performed heuristic searches yielded 596 equally most parsimonious trees. Protataromys and Karakoromys are stem ctenodactylids and appear as the earliest offshoots of the Ctenodactylidae clade, which represents a well‐supported family rank. Within this family, the Tataromyinae appear paraphyletic, whereas the Ctenodactylinae sensu lato are a clade including the new taxon Helanshania. As such, a revision of the Tataromyinae is envisaged and a new subfamily is erected (Yindirtemyinae). Amongst the Ctenodactylinae, a tribe Ctenodactylini encompassing the crown ctenodactylines is proposed. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 531–550.  相似文献   

11.
We analyzed the avifaunas of the Caribbean islands and nearby continental areas and their relationships using Parsimony Analysis of Endemicity (PAE), in order to assess biogeographical patterns and their concordance with geological and phylogenetic evidence. Using distributional information of birds obtained from published literature, a presence/absence matrix for 695 genera and 2026 species of land and freshwater birds was constructed and analyzed. Three different analyses were performed: for species, for genera, and for species and genera combined. In the combined analysis, the Lesser Antilles appear paraphyletic at the base of the cladogram. Then, two major clades are identified: South America (Andes, Venezuelan lowlands, Dutch West Indies and Trinidad and Tobago) and North America, including the Greater Antilles in a clade that is the sister area to Yucatan and the Central American countries nested from north to south. PAE results support Caribbean vicariant models and cladistic biogeographical hypotheses on area relationships, and show relative congruence with available phylogenetic data. Bird biogeography on the Caribbean islands appears to have been caused by both vicariance and dispersal processes. © The Willi Hennig Society 2007.  相似文献   

12.
Maximum likelihood analysis of 113 rbcL sequences leads to a well resolved phylogeny of Jungermanniales. All species with perigynia or marsupia are found in one clade, whereas species with coelocaules are placed in several lineages. The broadly circumscribed Geocalycaceae (including Lophocoleaceae) of most recent authors are resolved as polyphyletic. Geocalycaceae genera which develop female involucres without involvement of stem tissue (Chiloscyphus, Heteroscyphus, Leptoscyphus, Physotheca) form a robust clade which is placed sister to Plagiochilaceae whereas the genera with involucres originating at least partly from stem tissue (Geocalycaceae s.str., Geocalyx, Harpanthus, Saccogyna) are nested within the paraphyletic Jungermanniaceae. This topology leads to the exclusion of the strictly perianth-bearing species from Geocalycaceae and the reinstatement of Lophocoleaceae. Campanocolea is nested within Chiloscyphus. Physotheca and Chiloscyphus breutelii are placed within an unsupported clade with several accessions of Leptoscyphus. Heteroscyphus forms a paraphyletic grade at the base of Chiloscyphus.  相似文献   

13.
Phytophagous ladybird beetles of the tribe Epilachnini are a cosmopolitan, species‐rich group of significant economic importance as pests of agricultural crops. The tribe is well characterized morphologically and clearly monophyletic, but very little is known about its internal phylogenetic relationships and their genus‐level taxonomy. In order to infer the evolutionary history of Epilachnini, test its monophyly and provide a phylogeny‐based classification, we assembled a comprehensive dataset, consisting of four DNA markers (18S and 28S rRNA and 16S, COI mtDNA) and a matrix of 104 morphological characters for 153 species of Epilachnini representing all previously recognised genera, ~11% of the known species, and 14 outgroup taxa. Molecular, morphological and combined datasets were analysed using maximum likelihood, parsimony and Bayesian inference. Bayes factors and Approximately Unbiased tests (AU) were used to compare alternative phylogenetic hypotheses of unconstrained and backbone‐constrained analysis. Only 14 of the 25 included genera were recovered monophyletic, as originally defined. Afidentula Kapur, Afidenta Dieke, Afissula Kapur, Epilachna Chevrolat, Henosepilachna Li Toxotoma Weise and Mada Mulsant are shown to be poly‐ or paraphyletic; Chnootriba Chevrolat, Subafissa Bielawski, Lalokia Szawaryn & Tomaszewska and Papuaepilachna Szawaryn & Tomaszewska form monophyletic groups within larger clades of genus level. All of these genera are redefined here. The two largest genera of Epilachnini, Epilachna Chevrolat and Henosepilachna Li were represented by multiple monophyletic clades, which we described as new genera: Chazeauiana Tomaszewska & Szawaryn gen.n. ; Diekeana Tomaszewska & Szawaryn gen.n .; Fuerschia Tomaszewska & Szawaryn gen.n. and Ryszardia Tomaszewska & Szawaryn gen.n . The following new synonyms are proposed: Afissa Dieke (=Afissula Kapur); Henosepilachna Li in Li & Cook (=Subafissa Bielawski); Papuaepilachna Szawaryn & Tomaszewska (=Lalokia Szawaryn & Tomaszewska). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:440E7FA4‐C859‐47E0‐8335‐30D478CBA8FA .  相似文献   

14.
Six genera have been described in the family Canellaceae, four of them from the Neotropics and the other two from Africa and Madagascar. The Caribbean genera are Canella, Pleodendron and Cinnamodendron. Canella is a monotypic genus widespread in the region, and Pleodendron is present in the Greater Antilles and Costa Rica. Cinnamodendron occurs in the Greater Antilles (Cuba, Hispaniola, and Jamaica) as well as in South America. A recent phylogenetic analysis of the family shows that Cinnamodendron is not monophyletic because the South American species and the Antillean species are recovered in two different clades. The Antillean species formed a clade sister to Pleodendron. The synapomorphies of the Antillean species of Cinnamodendron are tetramerous flowers with eight petals, eight stamens, four carpels, and four placentae. Based on the results from the phylogenetic analysis major taxonomy changes are expected for the family.
Resumen  Seis géneros han sido descritos en la familia Canellaceae, cuatro de estos para el neotrópico y los otros dos para Africa y Madagascar. En las Antillas se encuentran los géneros Canella, Pleodendron y Cinamodendron. Canella es un género monotípico de amplia distribución en la región del caribe y pleodendron se encuentra presente sólo en las antillas mayores y Costa Rica. Cinnamodendron ha sido dado tanto para las Antillas mayores como para America del Sur. Un análisis filogenético previo de la familia indica que el género Cinnamodendron no es monofilético. Existe una separación de las especies Sudamericanas y Antillanas en clados diferentes. Las especies de las Antillas forman un clado que es hermano de Pleodendron. Los carácteres sinapomórficos de las especies antillanas de Cinnamodendron son: flores tetrámeras con ocho petalos, ocho estambres, cuatro carpelos y cuatro placentas. Basados en los resultados de la filogenia del grupo, se anticipan cambios taxonómicos para la familia.
  相似文献   

15.
Vasseuromys is a species‐rich genus of small‐ to medium‐sized glirids spanning the latest Oligocene to late Miocene of Europe and western Asia. Despite extensive discoveries over the past 50 years, little phylogenetic work has been done on Vasseuromys. This study presents the first phylogenetic analysis of the genus that includes all the described species and a new taxon Vasseuromys tectus sp. nov. from the late Miocene of eastern Europe, providing the first insights into the evolutionary relationships within the clade. Results suggest that the genus is clearly paraphyletic. Two strongly supported genus‐level clades are recognized within ‘Vasseuromys’: a restricted Vasseuromys clade (containing the three species, V. pannonicus, V. rugosus and V. tectus) and the Glirulus clade that includes ‘Vasseuromysduplex. The remaining ‘Vasseuromys’ species are found to constitute a set of paraphyletic taxa, with the polyphyletic ‘Ramys’ nested within it. The genus Gliruloides is synonymized with Glirulus. Vasseuromys tectus sp. nov. is the most derived member of the genus in having a greater number of cheek teeth ridges including constantly present anterotrope, centrotrope, second prototrope on M1–2, third metatrope on M2, two to three posterotropids on p4 and strong ectolophids on lower molars. The results of the study confirm a European origin for Vasseuromys while suggesting that the late Miocene species of the genus dispersed from the east in the early Turolian.  相似文献   

16.
Members of Calamyzinae, a clade of free‐living and ectoparasitic chrysopetalids, are mainly associated with deep‐sea chemosynthetic environments. The three currently known free‐living calamyzin species are placed in Vigtorniella. A new free‐living calamyzin species similar to these is described here. Phylogenetic analyses of Calamyzinae using mitochondrial (cytochrome c oxidase subunit I and 16S rDNA) and nuclear (Histone H3 and 18S rDNA) loci showed that Vigtorniella and the new species form a grade with respect to an ectoparasitic clade, requiring two new genera to be erected. All free‐living calamyzins show a similar anterior end and chaetal morphology. Micospina auribohnorum gen. et sp. nov. is described for the small‐bodied new species from deep‐sea whale falls off California and methane seeps off Costa Rica. The maximum‐likelihood and Bayesian analyses show Micospina gen. nov. as sister to the ectoparasitic clade. Boudemos gen. nov. is named for the clade of two larger‐bodied species: Boudemos flokati gen. et comb. nov. and Boudemos ardabilia gen. et comb. nov., which is sister group to all other Calamyzinae. Vigtorniella is retained for the type species, Vigtorniella zaikai (Kiseleva, 1992), with the adults found amongst bacterial mats at the boundary of the hydrogen sulphide zone in the Black Sea. Micospina gen. nov., Boudemos gen. nov., and Vigtorniella form a grade of free‐living taxa that is associated with feeding on organic‐enriched sediments, and the latter two taxa display ontogenetic jaw change. Jaws are absent in Micospina auribohnorum gen. et sp. nov. and most of the calamyzin clade of parasitic forms.  相似文献   

17.
The first scolopocryptopid centipede known from the fossil record is a specimen of the subfamily Scolopocryptopinae in Miocene amber from Chiapas, southern Mexico. It is described here as Scolopocryptops simojovelensis sp. nov. , displaying a distinct combination of morphological characters compared to extant congeners. Anatomical details of the fossil specimen were acquired by non‐invasive 3D synchrotron microtomography using X‐ray phase contrast. The phylogenetic position of the new species is inferred based on a combination of morphological data with sequences for six genes (nuclear 18S and 28S rRNA, nuclear protein‐coding histone H3, and mitochondrial 12S rRNA, 16S rRNA, and protein‐coding cytochrome c oxidase subunit I) for extant Scolopendromorpha. The data set includes eight extant species of Scolopocryptops and Dinocryptops from North America, east Asia, and the Pacific, rooted with novel sequence data for other blind scolopendromorphs. The molecular and combined data sets, analysed in a parsimony/direct optimization framework, identified a stable pattern of two main clades within Scolopocryptopinae. North American and Asian species of Scolopocryptops are united as a clade supported by both morphological and molecular characters. Its sister group is a Neotropical clade in which the type species of Dinocryptops is nested within a paraphyletic assemblage of Scolopocryptops species; Dinocryptops is placed in synonymy with Scolopocryptops. The strength of support for the relationships of extant taxa from the molecular data allow the Chiapas fossil to be assigned with precision, despite ambiguity in the morphological data; the fossil is resolved as sister species to the extant Laurasian clade. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 768–786.  相似文献   

18.
Alitocoris Sailer, 1950, consists of four valid species described from Central America. In a recent cladistic analysis of Ochlerini, the genus was considered paraphyletic in the Herrichella Distant, 1911, group of taxa. The present study provides a cladistic analysis of the Herrichella clade, using 88 morphological characters and 40 taxa representing 21 genera of Ochlerini, including all known species of Alitocoris plus 16 new species. Outgroups included Eritrachys bituberculata Ruckes, 1959, Phereclus pluto Stål, 1862, and Adoxoplatys comis Breddin, 1903, with the last used for rooting. The cladistic analysis was conducted using TNT under heuristic searches and implied weighting of characters; 11 K‐values calculated for an average character fit ranged from 50 to 90% of a perfectly hierarchical character. The results corroborated the paraphyly of Alitocoris, calling for changes in the classification of the genus with the proposition of three new genera for two, three, and ten species, respectively, that will be described elsewhere. Alitocoris is redescribed and a key for the species is presented. Alitocoris brunneus, Alitocoris maculosus, and Alitocoris parvus are removed from the genus, and the new species Alitocoris grandis sp. nov. , Alitocoris lateralis sp. nov. , and Alitocoris ornatus sp. nov. are described. © 2013 The Linnean Society of London  相似文献   

19.
The new genus and new species of seed beetles (Copeoptera, Chrysomelidae, Bruchinae) Electrocaryedon poinari gen. et sp. nov. are described from the Late Eocene Baltic amber. This new genus differs from the genus Caryedon Schoenherr, 1823 in the completely separate procoxal cavities, not shortened lateral carina on pronotum, and wider body with sparse setae.  相似文献   

20.
The taxonomy and systematics of European house spiders, currently constituting the ill‐defined Tegenaria?Malthonica complex (including Aterigena) in the family Agelenidae, are revised. In Europe four monophyletic genera and 81 species are defined. One genus, Eratigena gen. nov. , and seven species are described as new; at species level 17 new synonyms and 20 new combinations are proposed, and the original combination of 14 species is reinstated. Five species could not be placed (incertae sedis) because of insufficient material and one taxon is regarded as ‘nomen dubium’. On the basis of a detailed morphological assessment, 88 characters were chosen for a cladistic analysis. Phylogenetically informative characters include mostly spination patterns as well as spinneret and genital structures. In addition to morphology, three gene sections [cytochrome c oxidase subunit 1 (CO1), nicotinamide adenine dinucleotide dehydrogenase subunit 1 (NADH1) 28S] were analysed. Morphological and molecular analyses were performed individually and in combination applying maximum parsimony and Bayesian tree search methods. In all resulting trees Malthonica and Tegenaria in their present composition are either polyphyletic or paraphyletic. Consequently, we redefined the two genera and erected a new genus, Eratigena gen. nov. Identification keys are provided for the European agelenid genera as well as for the European species of Tegenaria and Eratigena gen. nov. The genera and most of the constituent species are described and illustrated. The new classification has also been applied to some extra European members of the Tegenaria‐Malthonica complex resulting in additional three new synonyms, seven reversals to the original combination, and four new combinations. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号