首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

3.
4.
5.
6.
7.
8.
To study the regulated expression of cloned heat-shock genes in homologous cells, hybrid Drosophila heat-shock-Escherichia coli beta-galactosidase genes were constructed. Segments of the ecdysterone-inducible 23,000-Da heat-shock protein (hsp23) gene and of two other hsp genes (hsp84 and 70), which are not hormone regulated, were functionally linked to the bacterial coding sequence, and the resulting hybrid genes were introduced into cultured, hormone-responsive Drosophila cells by transfection. All hybrid genes directed the synthesis of E. coli-specific beta-galactosidase in heat-treated cells. hsp23 hybrid gene expression was stimulated strongly by ecdysterone, while the activities of the other hybrid genes were not affected at all by the hormone. A hybrid gene with only 147 bp of hsp23 promoter sequence could not be activated by either heat or ecdysterone treatment. Thus, far upstream sequences contain signals required for the regulated expression of the hsp23 gene in Drosophila cells.  相似文献   

9.
10.
11.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

12.
13.
To study the regulated expression of cloned heat-shock genes in homologous cells, hybrid Drosophila heat-shock-Escherichia coli β-galactosidase genes were constructed. Segments of the ecdysterone-inducible 23,000-Da heat-shock protein (hsp23) gene and of two other hsp genes (hsp84 and 70), which are not hormone regulated, were functionally linked to the bacterial coding sequence, and the resulting hybrid genes were introduced into cultured, hormone-responsive Drosophila cells by transfection. All hybrid genes directed the synthesis of E. coli-specific β-galactosidase in heat-treated cells. hsp23 hybrid gene expression was stimulated strongly by ecdysterone, while the activities of the other hybrid genes were not affected at all by the hormone. A hybrid gene with only 147 bp of hsp23 promoter sequence could not be activated by either heat or ecdysterone treatment. Thus, far upstream sequences contain signals required for the regulated expression of the hsp23 gene in Drosophila cells.  相似文献   

14.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

15.
16.
17.
The effect of heat on IL-1 beta biosynthesis was investigated in both THP-1 cells, a myelomonocytic cell line which can be induced to make IL-1 alpha and beta, and human peripheral blood adherent monocytes (PBMC). Induction of THP-1 cells with LPS at 39 to 41 degrees C for 2 to 4 h resulted in the expected increased synthesis of the heat-shock proteins hsp 70 and hsp 90 but decreased synthesis of the IL-1 beta precursor protein, p35 (and its mRNA), compared with control cells at 37 degrees C. This appeared to be a direct effect on p35 synthesis rather than a block in LPS induction because heat also acted on preinduced cells. PBMC similarly incubated for 4 h with LPS required a temperature of 41 to 42 degrees C to induce hsp and show a decrease in p35 synthesis. Chemical inducers of the heat-shock response (heavy metals, sulphydryl reagents) were also effective inhibitors of IL-1 beta biosynthesis. A correlation was seen between the extent of IL-1 beta reduction and the level of hsp induction by chemical inducers in both THP-1 cells and PBMC which suggests that the two responses are linked. In addition, a gold salt currently used for therapy of chronic inflammation, auranofin, induced hsp and inhibited IL-1 beta biosynthesis, whereas a second salt, sodium aurothiomalate, did neither. These results support the hypothesis that elevated temperature is one of the physiologic signals for down-regulation of IL-1 beta biosynthesis through a mechanism related to the induction of hsp.  相似文献   

18.
19.
20.
The bacterium Holospora obtusa is a macronuclear-specific symbiont of the ciliate Paramecium caudatum. H. obtusa-bearing paramecia could survive even after the cells were quickly heated from 25 degrees C to 35 degrees C. To determine whether infection with H. obtusa confers heat shock resistance on its host, we isolated genes homologous to the heat shock protein genes hsp60 and hsp70 from P. caudatum. The deduced amino acid sequences of both cDNAs were highly homologous to hsp family sequences from other eukaryotes. Competitive PCR showed that H. obtusa-free paramecia expressed only trace amounts of hsp60 and hsp70 mRNA at 25 degrees C, but that expression of hsp70 was enhanced immediately after the cells were transferred to 35 degrees C. H. obtusa-bearing paramecia expressed high levels of hsp7O mRNA even at 25 degrees C and the level was further enhanced when the cells were incubated at 35 degrees C. In contrast, the expression pattern of hsp60 mRNA was the same in H. obtusa-bearing as in H. obtusa-free paramecia. These results indicate that infection with its endosymbiont can confer a heat-shock resistant nature on its host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号