首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To determine the tapering of human nerve fibres, rostral and caudal root pieces of cauda equina nerve roots were removed and nerve fibre diameter distributions were constructed for 4 myelin sheath thickness ranges for the two sites, and compared with each other. The reduction of the group diameter in the different alpha-motoneuron groups was 0.2 % per 13 cm. Accounting for systematic errors, there may be even less tapering. An identified single nerve fibre showed no tapering. Further, there is indication that gamma-motoneurons, preganglionic sympathetic and parasympathetic fibres and skin afferents also reduce their fibre diameter by 0.2 % per 13 cm or less. Consequently, a nerve fibre with a diameter of 10 microm would be reduced to approximately 9.8 microm at 1m from the cell soma. Preganglionic parasympathetic fibres were found to be represented in roots S1 to S5. At similar distances from the spinal cord, the mean diameter of ventral root alpha1-motoneuron (FF) axons increased from the thoracic towards the lumbo-sacral region before decreasing again in the lower sacral region. Usually no alpha1-motoneuron axons were found in S5 roots. The diameter distribution of unmyelinated nerve fibres of a ventral S5 root showed three peaks at 0.25, 0.95 and 1.2 microm. The unmyelinated fibres with diameters around 0.25 microm may represent parasympathetic fibres. In six selected areas of the ventral S5 root, 6.6 times more unmyelinated nerve fibres than myelinated fibres were found on the average.  相似文献   

2.
Axonal and axolemmal development of fibers from rat optic nerves in which gliogenesis was severely delayed by systemic injection of 5-azacytidine (5-AZ) was examined by freeze-fracture electron microscopy. In neonatal (0-2 days) rat optic nerves, all fibers lack myelin, whereas in the adult, virtually all axons are myelinated. The axolemma of neonatal premyelinated fibers is relatively undifferentiated. The P-fracture face (P-face) displays a moderate (approximately 550/micron 2) density of intramembranous particles (IMPs), whereas the E-fracture face (E-face) has few IMPs (approximately 125/micron 2) present. By 14 days of age, approximately 25% of the axons within control optic nerves are ensheathed or myelinated, with the remaining axons premyelinated. The ensheathed and myelinated fibers display increased axonal diameter compared to premyelinated axons, and these larger caliber fibers exhibit marked axonal membrane differentiation. Notably, the P-face IMP density of ensheathed and myelinated fibers is substantially increased compared to premyelinated axolemma, and, at nodes of Ranvier, the density of E-face particles is moderately high (approximately 1300/micron 2), in comparison to internodal or premyelinated E-face axolemma. In optic nerves from 14-day-old 5-AZ-treated rats, few oligodendrocytes are present, and the percentage of myelinated fibers is markedly reduced. Despite delayed gliogenesis, some unensheathed axons within 5-AZ-treated optic nerves display an increased axonal diameter compared to premyelinated fibers. Most of these large caliber fibers also exhibit a substantial increase in P-face IMP density. Small (less than 0.4 micron) diameter unensheathed axons within treated optic nerves maintain a P-face IMP density similar to that of control premyelinated fibers. Regions of increased E-face particle density were not observed. The results demonstrate that some aspects of axolemma differentiation continue despite delayed gliogenesis and the absence of glial ensheathment, and suggest that axolemmal ultrastructure is, at least in part, independent of glial cell association.  相似文献   

3.
In the optic nerve of Anurans numerous myelinated and unmyelinated axons appear under the electron microscope as compact bundles that are closely bounded by one or several glial cells. In these bundles the unmyelinated fibers (0.15 to 0.6 µ in diameter) are many times more numerous than the myelinated fibers, and are separated from each other, from the bounding glial cells, or from adjacent myelin sheaths, by an extracellular gap that is 90 to 250 A wide. This intercellular space is continuous with the extracellular space in the periphery of the nerve through the numerous mesaxons and cell boundaries which reach the surface. Numerous desmosomes reinforce the attachments of adjacent glial membranes. The myelinated axons do not follow any preferential course and, like the unmyelinated ones, have a sinuous path, continuously shifting their relative position and passing from one bundle to another. At the nodes of Ranvier they behave entirely like unmyelinated axons in their relations to the surrounding cells. At the internodes they lie between the unmyelinated axons without showing an obvious myelogenic connection with the surrounding glial cells. In the absence of connective tissue separating individual myelinated fibers and with each glial cell simultaneously related to many axons, this myelogenic connection is highly distorted by other passing fibers and is very difficult to demonstrate. However, the mode of ending of the myelin layers at the nodes of Ranvier and the spiral disposition of the myelin layers indicate that myelination of these fibers occurs by a process similar to that of peripheral nerves. There are no incisures of Schmidt-Lantermann in the optic myelinated fibers.  相似文献   

4.
The pineal tract of rainbow trout from the pineal end vesicle to the posterior commissure was studied by light and electron microscopy. Five types of nerve fibres (photoreceptor basal process, ganglion cell dendrite, electron-lucent fibre and synaptic vesicles, myelinated and unmyelinated axons) and two modes of synapses (photoreceptor basal process ganglion cell dendrite and axon terminal with synaptic vesicles-photoreceptor basal process synapses) are distinguishable in the proximal region of end vesicle. The two distinct synaptic associations with the photoreceptor basal process suggest two different (excitatory and inhibitory) control of pineal sensory activity. At the distal portion of stalk about two thousand nerve fibres converge into dorsal and ventral bundles. Posterior to the habenular commissure several small branches run out laterally from the ventral bundles to the basal margin of the ependyma, but not into the habenular commissure. The dorsal bundle passes through the dorsal side of the subcommissural organ and runs ventral to the posterior commissure. The pineal tract is composed of unmyelinated axons, electron-lucent nerve fibres and myelinated axons. The number of fibres increases throughout the stalk and reaches the maximum number at the opening of pineal lumen to IIIrd ventricle, however, the number of fibres then decreases through the subcommissural organ and posterior commissure. This increase and decrease of nerve fibres suggest the continuous participation of axonal fibres of pineal nerve cells and the ramification or branching of pineal tract, respectively.  相似文献   

5.
Biochemical and morphological studies were done on a new trembling mutant hamster CBB. The yield of myelin from the mutant was 30 and 40% of the control at 46 and 140 days of age, respectively, but myelin composition and 2',3'-cyclic nucleotide-3'-phosphohydrolase (CNPase) activity were normal. Morphologically, about 18% of the axons were myelinated in the mutant optic nerve at 46 days of age, in which the myelinated fibers were those with larger diameters (more than 0.6 micron), while the control had a peak at 0.4 micron in diameter. The ultrastructure and thickness of compact myelin lamellae in the mutant were normal. Myelination and the structure of peripheral nerve myelin appeared normal. The results indicate that the essential defect is the delay and arrest of myelination in the CNS, which is probably caused by either a decreased rate of synthesis of myelin components in oligodendrocytes or a defect in the oligodendrocyte-axon recognition in smaller axons.  相似文献   

6.
Vestibular nerves of squirrel monkeys (Saimiri sciureus) embedded in plastics and epoxies were examined with light microscopy (LM) and transmission electron microscopy (TEM), and computerized measures were obtained and analyzed statistically. An average of 12,412 perikarya and 12,005 myelinated nerve fibers was obtained. Approximately 0.7% of the perikarya appeared unmyelinated under LM. About 500 unmyelinated fibers were counted. The cross-sectional area of 1,864 perikarya was 200-650 micron 2. The cross-sectional area of 1,346 nerve fibers was 3-11 micron 2 for the axoplasm and 11-12 micron 2 for the myelin sheath of the same fiber. Myelin thickness was directly proportional to the axoplasm cross-sectional area of the nerve fibers. The cross-sectional area of central axons and peripheral dendrites differed significantly (p less than 0.001). The initial segments of peripheral dendrites were usually smaller, but longer than the initial segments of the central axons. Both initial segments increased in diameter after the first node of Ranvier. Schmidt-Lantermann incisures were more abundant in thick and heavily myelinated fibers than in thin and lightly myelinated fibers. Larger perikarya usually had larger fibers and vice versa, within the first 100-200 micron from the first node of Ranvier. No major ultrastructural differences were found between myelinated and unmyelinated perikarya, except at the hillock region. The Nissl substance was preferentially located in the peripheral cytoplasm.  相似文献   

7.
1. Regional changes in the diameter of single myelinated afferent nerve fibres innervating the taste disc of the fungiform papillae on the bullfrog tongue were investigated morphologically and functionally. 2. The diameter of myelinated afferents in the medial lingual branch of the glossopharyngeal nerve averaged 8.4 microns at the proximal end of the tongue and gradually decreased at the rate of 0.8 micron/cm length of the fibres as they ran in the apical direction of the tongue. 3. The conduction velocity of single myelinated afferent fibres within the tongue decreased gradually as they ran peripherally. 4. Electrophysiological inspection of neural connections between the fungiform papillae suggests that a gradual centrifugal decrease in the diameter of a single myelinated afferent fibre is not due to multiple bifurcations of the fibre at various sites within the tongue, but due to a natural gradual decrease in the thickness of the myelin sheath and the diameter of axon.  相似文献   

8.
The regeneration of the sciatic nerve fibres was studied in both normal and vitamin E-deficient rats at 30 and 60 days after crush. The vitamin E is involved in one of the most important mechanisms of protection against peroxidation of plasma membrane lipids; the plasma membrane plays certainly a role in nerve regeneration. Both the diameter and the total number of myelinated nerve fibres was calculated at different times. The number of myelinated fibres in the undenervated deficient animals was lower than that found in the undenervated normals animals. Following the nerve crush, in normal animals after two months the number of myelinated fibres exceeded the number found in undenervated normal animals, whereas in the deficient rat nerves it was significantly lower than in the corresponding controls and moreover it did not even reach the number found in the nerves of undenervated deficient rats. Finally, the caliber distribution of myelinated fibres in undenervated and denervated deficient rats shows a relative percent increase in the number of greatest axons and a decrease in smaller axons. This result confirm the vitamin E to be an important factor of the normal process of nerve regeneration.  相似文献   

9.
Previously it was assumed that nerve fibres are involved in the neurogenic inflammation induced by mechanical or chemical irriations. It has been also suggested that in diabetes mellitus the unmyelinated small diameter fibers are impaired as a result of diabetic neuropathy. Therefore, our aim was to study the alterations of the nerve processes in the gingivomucosal tissue in streptozotocin (STZ)-diabetic rats. Light- and electronmicroscopical examinations were made to analyze the changes in nerve fibres. After one week of steptozotocin treatment, the gingivomucosal tissue had inflammatory cell infiltration and some degenerated nerve fibres were also observed. Dense mitochondria, disorganization of cell organelles, and appearance of myelin-like dense bodies were found in the axons of degenerared nerve fibres. Semiquantitative analysis showed that 14 +/- 4% of the unmyelinated nerve fibres degenerated after one week of STZ treatment. However, degeneration of the myelinated nerve fibers was not observed. Two weeks after STZ treatment, most of the unmyelinated and myelinated nerve fibers showed degeneration (86 +/- 5%) and the placement of the ligature revealed a non-inflammatory connective tissue adjacent to a normal epithelium. The myelin sheath was disrupted and dark axoplasm with cytolysosomes became manifest. These findings demonstrated that both unmyelinated and myelinated nerve fibers are altered and inflammatory reaction exists in the gingivomucosal tissue only in the early stage of diabetes mellitus.  相似文献   

10.
POLARIZATION AND ELECTRON MICROSCOPE STUDY OF FROG NERVE AXOPLASM   总被引:3,自引:2,他引:1       下载免费PDF全文
1. The submicroscopic organization of nerve axons from R. pipiens and R. catesbiana has been studied by means of polarizing and electron microscopes. 2. In measurements on a series of 85 fresh myelinated axons from which the sheaths had been removed average values were obtained for the total birefringence, +2.5 x 10–4, the form birefringence, +1.4 x 10–4, and the refractive index of the oriented component, 1.523. The average partial volume occupied by axially oriented filaments was computed to be 0.69 per cent. 3. Electron micrographs of fixed myelinated axons demonstrate an average of 93 axially oriented neuroprotofibrils per square micron of cross-section. The neuroprotofibrils are approximately 90 A in diameter, of indefinite length, and occupy a computed partial volume of 0.59 per cent. 4. Mitochondria, neuroprotofibrils, endoplasmic reticulum, and dense particles are seen in electron micrographs of both myelinated and unmyelinated nerve axons. 5. It is concluded that the neuroprotofibrils are present in the living nerve, that they play an important but undetermined role in nerve function, and that these structures are not an artifact of osmium tetroxide fixation.  相似文献   

11.
The morphology of the pudendal nerve was quantified in adult male and female rats. The sensory branch of the pudendal nerve was about three times as large in cross section in males as in females, and the motor branch was about five times as large. Electron microscopy was used to determine the ultrastructural bases of these gross size differences. Differences that were found included greater packing density of both myelinated and unmyelinated axons in females, larger myelinated and unmyelinated axons in males, larger myelin sheaths of sensory axons in males, more numerous myelinated axons in both branches of males, and more numerous unmyelinated axons in the sensory branch of males. There was also some indication that myelinated sensory axons were more likely to branch in the dorsal clitoral nerve of females than in the homologous nerve of males. Morphological differences in the structure of pudendal axons, their associated Schwann cells, and the extracellular matrix as well as differences in sensory and motor axonal number all have potential implications for the sexual differentiation of the central nervous system and behavior.  相似文献   

12.
The development and structure of myelin sheaths have been studied in the optic nerves of rats and of Xenopus laevis tadpoles. Both potassium permanganate- and osmium-fixed material was examined with the electron microscope. In the first stage of myelinogenesis the nerve fibre is surrounded by a cell process which envelops it and forms a mesaxon. The mesaxon then elongates into a loose spiral from which the cytoplasm is later excluded, so that compact myelin is formed. This process is similar to myelinogenesis in the peripheral nervous system, although in central fibres the cytoplasm on the outside of the myelin is confined in a tongue-like process to a fraction of the circumference, leaving the remainder of the sheath uncovered, so that contacts are possible between adjacent myelin sheaths. The structure of nodes in the central nervous system has been described and it is suggested that the oligodendrocytes may be the myelin-forming cells.  相似文献   

13.
The early myelination of the dorsal funiculus at the level of the 4th cervical spinal cord was ultrastructurally studied in the one-day-old mouse. It was found that the fibers were mainly unmyelinated. However, some early myelinated fibers were scattered among unmyelinated fibers. In the initial stage of the myelination, the axon was partially contracted by a piece of cytoplasmic process of the oligodendroglial cell. The two lips of the oligodendroglial process then extended and converged, enwrapping the axon completely and forming the first contact point. With the anchorage of that contact point, the two lips of the process became elongated and enfolded by each other, and produced the internal and external tongues of the future myelin sheath. More contact points were formed at a regular interval by the regional fusion of the two external surface layers of the opposed cytoplasmic membranes of adjacent tongue processes. With the advanced bidirectional spiralization of the two tongue processes, many contact points were found between the adjacent lamellae of the concentrically arranged oligodendroglial process; simultaneously, the cleft between the neighboring contact points disappeared and formed the initial sites of the intraperiod line. During the early myelination, one single axon ensheathed concentrically by two different oligodendroglial processes as well as several axons enwrapped by a continuous spiral myelin sheath of one oligodendroglial cell were frequently observed. The cross-sectional areas of unmyelinated axons varied from 0.01 to 0.2 micron 2, with a median of 0.07 micron 2; whereas, that of promyelinated axons ranged from 0.09 to 1.4 micron 2, with a median at 0.61 micron 2. These data support the suggestion that the axon calibre is a critical factor for the initiation of central myelination.  相似文献   

14.
Summary The surface morphology of normal myelinated nerve fibres prepared in different ways for scanning electron microscopy has been studied and compared with the surface features of similar fibres undergoing retrograde changes. Nodes of Ranvier, paranodal specializations, artefactual fractures of the myelin, and the endoneurial collagen sheaths are described. A regular pattern of elevations, usually with a pitted or depressed surface seen on normal myelinated fibres after certain preparative procedures are thought to be artefacts produced during preparation and to be related to the neurokeratin network.Alterations in the surface structure of fibres central to long-standing nerve transections include irregular protuberances, serial surface corrugations and large swellings, all associated with demyelination. Fibres that have undergone retrograde degeneration consist of endoneurial tubes with focal swellings occupied by macrophages or myelin debris, together with fine unmyelinated and small myelinated regenerating axons. Strict centrifugal progression of myelination of regenerating axons was not observed.We thank Mr. R. A. Willis for his collaboration and for taking the SEM photographs of normal nerve fibres, and the Cambridge Scientific Instrument Co. Ltd. for permission to reproduce the SEM photographs of experimental nerve fibres. We also thank Dr. A. Boyde for access to his SEM and for helpful comments on interpretation of the scanning electron micrographs, Prof. J. Z. Young, Dr. P. K. Thomas, and Dr. R. H. M. King for discussion, and Messrs. P. Reynolds and D. Gunn for photography.A grant from the Muscular Dystrophy Group of Great Britain is gratefully acknowledged.  相似文献   

15.
T J Hirvonen 《Acta anatomica》1987,128(2):134-139
The morphology of the dog intradental nerves has not been studied in detail, although dogs have been increasingly used in electrophysiological experiments on pulp nerve function. In this investigation electron microscopy and morphometric analysis were used to study the number and dimensions of the axons at the apex of the dog canine tooth. Two upper and two lower canines, each taken from a different animal, were used. The average number of axons entering a tooth was 2,089 (range: 1,241-3,034), 74.3% (range: 62.2-77.9%) of which were unmyelinated. The mean circumference of the myelinated and unmyelinated axons ranged from 11.1 to 13.9 microns and from 1.3 to 1.7 micron, respectively. Of the myelinated axons 13.7% had a circumference over 19 microns, which is considered to be the upper limit of the A delta-class. Of the unmyelinated axons 13.8% showed apposition to each other and 20% were partly exposed to the extracellular space; these features could, in part, offer the morphological basis for the extreme pain sensitivity of the tooth. The findings of the present study were considered in general to be comparable to the results of earlier histological and electrophysiological studies on pulp nerves of different species. Thus, it seems that the dog tooth is an adequate model for studying the pulp nerve function and morphology.  相似文献   

16.
Summary The intramuscular nerves and myoneural junctions in the rat rectus superior, medialis and inferior muscles from 10 hours to about 10 days after section of the trigeminal and oculomotor nerves were studied with the electron microscope. Two different kinds of myoneural junctions are to be observed; one type derives from myelinated nerves and is similar to the ordinary myoneural junctions (motor end plates) of other striated skeletal muscles, while the other type derives from unmyelinated nerves, is smaller in size and has many myoneural synapses distributed along a single extrafusal muscle fibre.Section of the trigeminal nerve caused no changes in the myoneural synapses. After section of the oculomotor nerve degenerative changes occur in both the myelinated and unmyelinated nerves and in both types of myoneural junctions. In the axon terminals of both the myelinated and unmyelinated nerves the earliest changes are to be observed 10 to 15 hours after section of the nerve. First, swelling of the axoplasm, fragmentation of microtubules and microfilaments and swelling of mitochondria takes place, somewhat later agglutination of the axonal vesicles and mitochondria. The axon terminals are separated from the postsynaptic muscle membrane by hypertrophied teloglial cells about 24 hours after section of the nerve. The debris of the axon terminals is usually digested by the teloglial cells within 42 to 48 hours in both types of myoneural junction.Changes in the postsynaptic membrane are observed in the myoneural junctions of the unmyelinated nerves as disappearance of the already earlier irregular infoldings, whereas no changes take place in the infoldings of the motor end plates. The postsynaptic sarcoplasm and its ribosomal content increase somewhat.The earliest changes occur along unmyelinated axons 10 to 15 hours and along myelinated axons 15 to 24 hours after nerve section. The unmyelinated axons are usually totally digested within 48 hours, whereas the myelinated axons took between 48 hours and 4 days to disappear. The degeneration, fragmentation and digestion of the myelin sheath begin between 24 and 42 hours and still continues 10 days after the operation.The results demonstrate that in the three muscles studied structures underlying the physiologically well known double innervation of the extraoccular muscles are all part of the oculomotor system.We are grateful to Professor Antti Telkkä, M. D. Head of the Electron Microscope Laboratory, University of Helsinki, for permission to use the facilities of the laboratory.  相似文献   

17.
Biopsy of the sural nerve was performed on three patients with severe Minamata disease of more than 10 years duration. There were so many unmyelinated and poorly myelinated nerve fibers that myelinated fibers scattered irregularly in small numbers or in groups of peculiar features in the intraneural bundle. Abnormaly thin or poorly formed myelin sheaths were noticed. Incomplete myelination and abnormal myelination varied in size and shape appeared as fetal anomaly. Regenerated axons extremely small in size remained singly or in groups following regenerative sprouting. Sometimes, extremely small axons with normal myelination were noticeable, while the axons were lost, leaving myelin sheaths. Axons occasionally contained increased neurofilaments. Schwann cells were not so increased as in adult Minamata disease. Degenerative changes of nerve fibers still proceeded, presumably because the patients lived in the mercury-contaminated district. Myelin degenerations and glycogen deposits in the axoplasm were identified.  相似文献   

18.
Summary The effect of AY-9944, an inhibitory cholesterol biosynthesis, on the myelination of the optic nerve of rats was studied. Suckling rats were injected intraperitoneally with the drug every other day from birth, and were sacrificed at 10, 20 and 30 days of age together with littermate controls. The analysis is based on counting, at the electron-microscope level, the number of unmyelinated axons and the number of myelin lamellae surrounding each myelinating axon. The results indicate that a decrease in endogenous cholesterol by AY 9944, induced an overall retardation of the myelination process in the optic nerve: a larger proportion of myelinated axons and smaller number of myelin lamellae around the myelinating axons, when compared with the littermate controls, was observed. Exogenous cholesterol from the maternal milk did not compensate for a lack in endogenous cholesterol.Degenerating myelin sheaths were frequently seen in the experimental optic nerves at 20 and 30 days of age. Numerous membranous, intracytoplasmic drug-induced inclusions were found at all ages studied. Acknowledgements. The author is particularly indebted to Dr. B. G. Uzman and Dr. G. M. Villegas for their valuable discussion and suggestions. He wishes also to thank Mr. F. Paredes, Mr. J. Aristimuño and Miss Marcia Escala for their technical assistance; Mr. J. Bigorra for the photographic aid, and Miss Sonia Rodríguez for her secretarial help.  相似文献   

19.
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.  相似文献   

20.
Summary Rat dorsal spinal nerve roots were cut; 20 h later the axons in the vicinity of the cut were examined by light and electron microscopy. The changes in the cut tip distant from the ganglion were largely degenerative. On the ganglionic side of the cut a cap of free unmyelinated sprouts was formed. These sprouts contained clear and dense-core vesicles 40–150 nm in diameter, smooth endoplasmic reticulum and mitochondria. Some of the unmyelinated sprouts were extensions of myelinated axons, others arose from myelinated axons by lateral budding. In both myelinated and non-myelinated axons there was an accumulation of mitochondria, tubulo-vesicular smooth endoplasmic reticulum and large and small dense-core vesicles for a distance of approximately 500 m behind the tip. Dense-core vesicles were more common in nonmyelinated axons than in their myelinated counterparts. In areas of intense accumulation the non-myelinated fibres were grossly swollen and distorted. The myelinated axons and some of the sprouts contained an unusual type of mitochondrion. The similarity between these sprouts and pre-synaptic terminals is discussed.I.R.D. is supported by the Medical Research Council; P.K. thanks the Mental Health Trust for a project grant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号