首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.  相似文献   

2.
Pseudorabies virus (PRV), a swine neurotropic alphaherpesvirus, is known to invade the central nervous system (CNS) of a variety of animal species through peripherally projecting axons, replicate in the parent neurons, and then pass transsynaptically to infect other neurons of a circuit. Studies of the human pathogen herpes simplex virus type 1 have reported differences in the direction of transport of two strains of this virus after direct injection into the primate motor cortex. In the present study we examined the direction of transport of virulent and attenuated strains of PRV, utilizing injections into the rat prefrontal cortex to evaluate specific movement of virus through CNS circuitry. The data demonstrate strain-dependent patterns of infection consistent with bidirectional (anterograde and retrograde) transport of virulent virus and unidirectional (retrograde) transport of attenuated PRV from the site of injection. The distribution of infected neurons and the extent of transsynaptic passage also suggest that a release defect in the attenuated strain reduces the apparent rate of viral transport through neuronal circuitry. Finally, injection of different concentrations of virus influenced the onset of replication within a neural circuit. Taken together, these data suggest that viral envelope glycoproteins and virus concentration at the site of injection are important determinants of the rate and direction of viral transport through a multisynaptic circuit in the CNS.  相似文献   

3.
In swine, the nasal turbinate epithelium is both a site of swine herpesvirus 1 (pseudorabies virus, PRV) replication and a tissue affected by toxin fromPasteurella multocida serogroup D. We examined the effects of exposure to PRV and exposure to toxin in mice, swine, and nasal turbinate cell cultures. Increased mortality in mice was observed when nonlethal doses of PRV (1000 or 100 plaque-forming units, PFU) were administered along with nonlethal doses (60–200 ng/kg) of toxin. In swine, clinical disease and death in adult pigs was observed after an intradermal injection of toxin (20 ng/kg) and intranasal exposure to 1000 PFU/kg of PRV. Nasal turbinate cell cultures incubated with toxin and PRV had increased protein synthesis, DNA synthesis, and increased recovery of virus particles. These findings indicate that a toxin fromP. multocida serogroup D enhances swine herpesvirus 1 replication and lethality in cell cultures and animal models.  相似文献   

4.
We previously demonstrated that intraocular injections of virulent and attenuated strains of pseudorabies virus (PRV) produce transneuronal infection of functionally distinct central visual circuits in the rat. The virulent Becker strain of PRV induces two temporally separated waves of infection that ultimately target all known retinorecipient neurons; the attenuated Bartha strain only infects a functionally distinct subset of these neurons. In this study, we demonstrate that deletion of a single viral gene encoding glycoprotein gI is sufficient to reproduce both the novel pattern of infectivity and the reduced neurovirulence of the Bartha strain of PRV. Glycoprotein gIII, a major viral membrane protein required for efficient adsorption of virus in cell culture, has no obvious role in determining the pattern of neuronal infectivity, but appears to function with gI to influence neurovirulence. These data suggest that neuroinvasiveness and virulence are the products of an interaction of viral envelope glycoproteins with as yet unidentified cellular receptors.  相似文献   

5.
The transsynaptic retrograde transport of the pseudorabies virus Bartha (PRV-Bartha) strain has become an important neuroanatomical tract-tracing technique. Recently, dual viral transneuronal labeling has been introduced by employing recombinant strains of PRV-Bartha engineered to express different reporter proteins. Dual viral transsynaptic tracing has the potential of becoming an extremely powerful method for defining connections of single neurons to multiple neural circuits in the brain. However, the present use of recombinant strains of PRV expressing different reporters that are driven by different promoters, inserted in different regions of the viral genome, and detected by different methods limits the potential of these recombinant virus strains as useful reagents. We previously constructed and characterized PRV152, a PRV-Bartha derivative that expresses the enhanced green fluorescent protein. The development of a strain isogenic to PRV152 and differing only in the fluorescent reporter would have great utility for dual transsynaptic tracing. In this report, we describe the construction, characterization, and application of strain PRV614, a PRV-Bartha derivative expressing a novel monomeric red fluorescent protein, mRFP1. In contrast to viruses expressing DsRed and DsRed2, PRV614 displayed robust fluorescence both in cell culture and in vivo following transsynaptic transport through autonomic circuits afferent to the eye. Transneuronal retrograde dual PRV labeling has the potential to be a powerful addition to the neuroanatomical tools for investigation of neuronal circuits; the use of strain PRV614 in combination with strain PRV152 will eliminate many of the pitfalls associated with the presently used pairs of PRV recombinants.  相似文献   

6.
7.
Disruption of specific components of the host cytoskeleton has been reported for several viruses and is thought to be beneficial for viral replication and spread. Our previous work demonstrated that infection of swine kidney (SK-6) cells with pseudorabies virus (PRV), a swine alphaherpesvirus, induced actin stress fiber breakdown. In the present study, using several PRV deletion mutants, we found that the US3 serine/threonine (S/T) protein kinase is involved in breakdown of actin stress fibers in different PRV-infected cell lines. Further, by transfection assays, we showed that PRV US3 itself, in the absence of other viral proteins, is able to trigger actin stress fiber breakdown when it is localized in sufficient amounts in the nucleus.  相似文献   

8.
A recombinant pseudorabies virus (PRV), designated LLT beta delta 2, which contains a 3-kbp deletion spanning the junction of the unique long and internal repeat sequences was constructed. Compared with the parental strain and a virus rescued for the deleted sequences, LLT beta delta 2 exhibited similar replication characteristics in tissue culture. When inoculated intranasally in swine, LLT beta delta 2 was significantly reduced in virulence and did not produce neurological signs characteristic of PRV infection. LLT beta delta 2 replicated efficiently at the site of inoculation and in peripheral nervous tissues, but replication was restricted in the central nervous system. These results indicate the presence of a PRV neurovirulence determinant in the vicinity of the junction.  相似文献   

9.
10.
The tegument of herpesvirus virions is a distinctive structure whose assembly and function are not well understood. The herpes simplex virus type 1 VP22 tegument protein encoded by the UL49 gene is conserved among the alphaherpesviruses. Using cell biology and viral genetics, we provide an initial characterization of the pseudorabies virus (PRV) VP22 homologue. We identified three isoforms of VP22 present in PRV-infected cells that can be resolved by polyacrylamide gel electrophoresis. The predominant form is not phosphorylated and is present in virions, while the other two species are phosphorylated and excluded from virions. VP22 localized to the nucleus by 6 h postinfection, as determined by immunofluorescence and cell fractionation. VP22 immunofluorescence in the nucleus was both diffuse and in punctate structures. The punctate nuclear localization was the most pronounced form of staining and did not localize exclusively to sites of viral DNA replication. Unexpectedly, a VP22 null mutant had no obvious phenotypes during tissue culture infections and was similar to the wild type in all respects. Moreover, the VP22 null mutant was as virulent and neuroinvasive as the wild-type virus after infection of the rodent eye and spread to the brain using both anterograde and retrograde neuronal circuits.  相似文献   

11.
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection.  相似文献   

12.
Alpha-herpesviruses constitute closely related neurotropic viruses, including herpes simplex virus in man and pseudorabies virus (PRV) in pigs. Peripheral sensory neurons, such as trigeminal ganglion (TG) neurons, are predominant target cells for virus spread and lifelong latent infections. We report that in vitro infection of swine TG neurons with the homologous swine alpha-herpesvirus PRV results in the appearance of numerous synaptophysin-positive synaptic boutons (varicosities) along the axons. Nonneuronal cells that were juxtaposed to these varicosities became preferentially infected with PRV, suggesting that varicosities serve as axonal exit sites for the virus. Viral envelope glycoprotein D (gD) was found to be necessary and sufficient for the induction of varicosities. Inhibition of Cdc42 Rho GTPase and p38 mitogen-activated protein kinase signaling pathways strongly suppressed gD-induced varicosity formation. These data represent a novel aspect of the cell biology of alpha-herpesvirus infections of sensory neurons, demonstrating that virus attachment/entry is associated with signaling events and neuronal changes that may prepare efficient egress of progeny virus.  相似文献   

13.
14.
Transneuronal tracing of neuronal circuitry with neurotropic viruses has provided valuable insights in the way in which the nervous system imposes temporal organization on physiological processes and behavior. The swine alpha herpes virus known as pseudorabies virus, or PRV, has been particularly useful in this regard. Early studies identified attenuated mutants with selective tropism for visual circuitry involved in circadian regulation, and subsequent experiments employing this virus have provided considerable insight into the polysynaptic organization of the suprachiasmatic nuclei and associated circuitry. This literature, which has emerged during the past decade, is the subject of this mini review.  相似文献   

15.
Free-ranging feral swine (Sus scrofa) are known to be present in at least 32 states of the USA and are continuously expanding their range. Infection with pseudorabies virus (PRV) occurs in feral swine and the primary route of transmission in free-living conditions seems to be venereal. Between 1995 and 1999, naturally infected feral swine and experimentally infected hybrid progeny of feral and domestic swine, were kept in isolation and evaluated for occurrence of latent PRV indigenous to feral swine in sacral and trigeminal ganglia and tonsil. Sacral ganglia were shown, by polymerase chain reaction (PCR) amplification of the thymidine kinase (TK) gene of PRV, to be the most frequent sites of latency of PRV. Nine (56%) of 16 sacral ganglia, seven (44%) of 16 trigeminal ganglia, and five (39%) of 13 tonsils from naturally infected feral swine were positive for PCR amplification of TK sequences of PRV. These tissues were negative for PRV when viral isolation was attempted in Vero cells. DNA sequencing of cloned TK fragments from the sacral ganglia of two feral swine, showed only one nucleotide difference between the two fragments and extensive sequence homology to fragment sequences from various domestic swine PRV strains from China, Northern Ireland, and the USA. The hybrid feral domestic swine, experimentally inoculated with an indigenous feral swine PRV isolate by either the genital or respiratory route, acquired the infection but showed no clinical signs of pseudorabies. Virus inoculated into either the genital or respiratory tract could, at times, be isolated from both these sites. The most common latency sites were the sacral ganglia, regardless of the route and dose of infection in these experimentally infected hybrids. Nine of 10 sacral ganglia, six of 10 trigeminal ganglia, and three of 10 tonsils were positive for PCR amplification of TK sequences. No virus was isolated from these tissues in Vero cells. The demonstration of the sacral ganglia as the most common sites of latency of pseudorabies viruses indigenous to feral swine, supports the hypothesis that these viruses are primarily transmitted venereally, and not by the respiratory route as is common in domestic swine, in which the trigeminal ganglia are the predominant sites of virus latency.  相似文献   

16.
The membrane glycoproteins gE and gI are encoded by pseudorabies virus (PRV), a neurotropic, broad-host-range alphaherpesvirus of swine. PRV gE and gI are required for anterograde spread to a restricted set of retinorecipient neurons in the brain after infection of the rat retina. A related alphaherpesvirus, encoding gE and gI homologs, is called bovine herpesvirus 1.1 (BHV-1.1). BHV-1.1 is a respiratory pathogen of highly restricted host range and, in contrast to PRV, is unable to propagate in or cause disease in rodents. We have shown previously that the BHV-1.1 gE and gI proteins are capable of complementing the virulence functions of PRV gE and gI in a rodent model (A. C. Knapp and L. W. Enquist, J. Virol. 71:2731-2739, 1997). We examined the ability of the BHV-1.1 gE and gI homologs to direct circuit-specific invasion of the rat central nervous system by PRV. Both complete open reading frames were cloned into a PRV mutant lacking the PRV gE and gI genes. Recombinant viruses were analyzed for the ability to invade the rat brain after infection of the retina. Surprisingly, in a portion of the animals tested, the BHV-1.1 gE and gI proteins functioned autonomously to promote spread of PRV to a subset of retinorecipient regions of the brain. First, the presence of BHV-1.1 gI alone, but not PRV gI alone, promoted viral invasion of the optic tectum. Second, expression of BHV-1.1 gE alone facilitated PRV infection of a subset of neurons in the hippocampus not normally infected by PRV. When both BHV-1.1 proteins were expressed in a coinfection, all retinorecipient regions of the rat brain were infected. Therefore, depending on the viral source, homologs of gE and gI differentially affect spread between synaptically connected neurons in the rat.  相似文献   

17.
18.
Pseudorabies(PR), also called Aujeszky's disease, is a highly infectious disease caused by pseudorabies virus(PRV).Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950 s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry.Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection.Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.  相似文献   

19.
Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)1. PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site2,3. Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)4,5 . This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3''-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites6-11.  相似文献   

20.
We examined the ability of pseudorabies virus (PRV) to induce and suppress apoptosis in the trigeminal ganglion during acute infection of its natural host. Eight pigs were intranasally inoculated with a virulent field strain of PRV, and at various early times after inoculation, the trigeminal ganglia were assessed histologically. PRV-infected cells were detected by use of immunohistochemistry and in situ hybridization, and apoptosis was identified by in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. Light and electron microscopy was also used for morphological studies. Apoptosis was readily detected among infiltrating immune cells that were located surrounding PRV-infected neurons. The majority of PRV-infected neurons did not show morphological or histochemical evidence of apoptosis, even including those neurons that were surrounded by numerous inflammatory cells and exhibited profound pathological changes. However, neuronal virus-induced apoptosis also occurred but at a sporadic low level. These findings suggest that PRV is able to block apoptosis of infected trigeminal ganglionic neurons during acute infection of swine. Furthermore, our results also suggest that apoptosis of infiltrating inflammatory cells may represent an important viral mechanism of immune evasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号