首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymic formation of p-hydroxybenzoate from p-hydroxycinnamate   总被引:4,自引:3,他引:1       下载免费PDF全文
An enzyme that converts p-hydroxycinnamate into p-hydroxybenzoate was found in rat liver. It is localized in the mitochondria and requires ATP. The activity is lost when the mitochondria are stored frozen overnight. Addition of magnesium chloride, cytochrome c, GSH, coenzyme A or potassium cyanide did not have any effect on the activity. When the rats were fed with alpha-p-chlorophenoxyisobutyrate, the rate of formation of p-hydroxybenzoate increased twofold. The reaction has some similar properties to fatty acid oxidation, but appears to be different in many respects.  相似文献   

2.
Ubiquinone was biosynthesized when rat liver mitochondria were incubated with S-adenosyl-L-methionine, solanesyl diphosphate, and [U-14C]p-hydroxybenzoate. The intermediates of ubiquinone biosynthesis but not ubiquinone were accumulated in mitochondria incubated without S-adenosyl-L-methionine and the accumulated intermediates were converted to ubiquinone by the addition of the methyl group donor and an excess of cold p-hydroxybenzoate. No solaneylated compounds except nonaprenyl p-hydroxybenzoate were found in sonicated mitochondria, while the biosynthesis of ubiquinone was observed in the sonicated preparation of mitochondria in which the intermediates accumulated. The results indicate that the initial decarboxylation reaction is completely abolished and the subsequent reactions of hydroxylation and methylation are not completely inhibited by the sonication treatment and therefore the decarboxylation reaction is the next step after nonaprenylation of p-hydroxybenzoate. Mitoplasts could biosynthesize ubiquinone with activity comparable to that of intact mitochondria, suggesting that components of the outer membrane and the intermembranous space of mitochondria are not involved in ubiquinone biosynthesis.  相似文献   

3.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferse (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rat limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate. For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1- 14C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U- 14C]acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studied gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

4.
The presence of mitochondria increased the incorporation of [2-(14)C]mevalonate into sterols in a cell-free system from rat liver. Various phenyl and phenolic compounds inhibited the incorporation of mevalonate when added in vitro. p-Hydroxycinnamate, a metabolite of tyrosine, was the most powerful inhibitor among the compounds tested. Catechol, resorcinol and quinol were inhibitory at high concentrations. Organic acids lacking an aromatic ring were not inhibitory. Two hypocholesterolaemic drugs, Clofibrate (alpha-p-chlorophenoxyisobutyrate) and Clofenapate [alpha,4-(p-chlorophenyl)phenoxyisobutyrate], which are known to affect some step before the formation of mevalonate in the biosynthesis of cholesterol in vivo, showed inhibition at a step beyond the formation of mevalonate in vitro. The presence of the aromatic ring and the carboxyl group in a molecule appears to be necessary for the inhibition.  相似文献   

5.
Biosynthesis of ubiquinone-9 was studied by incubating rat liver mitochondria with p-hydroxy[U-14C]benzoate, solanesyl diphosphate and S-adenosyl-L-methionine. When methylation reactions were inhibited by replacing S-adenosyl-L-methionine with S-adenosyl-L-homocysteine, nonaprenyl p-hydroxybenzoate and three other labeled peaks, designated as P1, P2 and P3 according to their retention times on HPLC, were observed. No carboxyl group was present in P1, P2 or P3 because the radioactivities disappeared when p-hydroxy[U-14C]benzoate was replaced by p-hydroxy[carboxyl-14C]benzoate. Compound P2 seemed to be hydroxylated but not methylated because its radioactivity markedly diminished under anaerobic conditions and the radioactivity was not incorporated into the compound from S-adenosyl-L-[methyl-3H]methionine, suggesting that P2 is 6-hydroxynonaprenylphenol. The complete correspondence of the retention times of P2 and chemically synthesized 6-hydroxynonaprenylphenol on HPLC further confirmed this possibility. P2 was a precursor of ubiquinone-9 because the radioactivity of the compound was incorporated into ubiquinone when incubated with mitochondria. The results suggest that the decarboxylation may occur prior to the first methylation in the ubiquinone biosynthesis in rat liver mitochondria, though it has been generally considered that in eukaryotes the first methylation precedes the decarboxylation.  相似文献   

6.
Isolated rat liver mitochondria failed to exhibit in vitro incorporation of [14C]-amino acids into actin-like protein. The use of a pulse-labelling technique demonstrated the appearance of [14C]-actin-like protein in the mitochondria of control, cycloheximide-free rats. The actin-like protein was identified by the method of affinity binding on DNAse1-sepharose and by electrophoresis on polyacrylamide gel with sodium dodecyl sulphate. It was shown that mitochondrial actin-like protein is not included among the nine polypeptides synthesized in mitochondria during cycloheximide-induced blockade of cytoplasmic protein synthesis. It was shown that actin-like protein was not desorbed from mitochondria by repeated washing with isotonic sucrose-mannitol medium. The results obtained indicate that the actin-like protein is biosynthesised in the cytoplasmic compartment.  相似文献   

7.
Study of soluble lipoprotein in rat liver mitochondria   总被引:2,自引:1,他引:1  
1. A water-soluble lipoprotein was isolated and purified from osmotically shocked preparations of rat liver mitochondria by using a technique of Sephadex-sandwich disc electrophoresis. 2. The purified lipoprotein migrates as a distinct sharp zone in high-resolution electrophoretic systems, indicating high degree of purity. 3. The lipoprotein resembles mitochondrial membranes with respect to lipid composition and lipid/protein ratio. 4. The lipoprotein and its apoprotein fraction obtained by delipidization at -18 degrees C to -20 degrees C have common properties with respect to their fluorescence spectra, instability to storage and electrophoretic mobility. 5. The purified lipoprotein has an excitation maximum at 325nm and a fluorescence maximum at 418nm. 6. Storage at 4 degrees C for 4 days or repeated freezing and thawing results in 15-30% decrease in electrophoretic mobility. 7. The patterns of incorporation in vitro of [1-(14)C]leucine into proteins of the soluble lipoprotein and of mitochondrial membrane of isolated rat liver mitochondria suggest a probable precursor role for the apoprotein in the formation of mitochondrial membrane protein. 8. Lipoprotein preparations isolated from mitochondrial fractions of rat kidney, brain and heart and of chicken and mouse liver resemble closely that obtained from rat liver mitochondria, suggesting that the soluble lipoprotein could be a distinct entity of mitochondrial origin.  相似文献   

8.
The phospholipid exchange in vitro between mitochondria and microsomes from rat liver and rat hepatoma 27 was investigated. On incubation with a postmicrosomal protein fraction the phospholipid exchange between subcellular fractions of the tumor was found to proceed much faster and less specific than between mitochondria and microsomes from normal liver. These results indicate that the earlier demonstrated lipid dedifferentiation of tumor cell membranes may be connected with an altered transmembrane phospholipid exchange in vivo.  相似文献   

9.
2,4-dichlorophenoxyacetic acid (2,4-D) is a hormonal herbicide widely used in the world because of its efficacy in the control of broadleaf and woody plants. In this study we have demonstrated in vivo covalent binding of the phenoxyherbicide 2,4-D to a single protein of 52 kD (from rat liver mitochondrial preparation) detected through immunoblotting studies with the specific antiserum for 2,4-D. The direct involvement of 2,4-D in the formation of the adduct has also been demonstrated in vitro, using liver mitochondrial preparations exposed to 14C-UL-2,4-D. Radiolabeled protein separated by SDS-PAGE and afterwards electroeluted showed a single labeled protein of 52 kD. When mitochondria exposed to radiolabeled xenobiotic were devoid of their outer membrane, the specific activity observed suggest that protein involved in covalent interaction belongs to the inner mitochondrial membrane. We propose that covalent binding of the phenoxyherbicide 2,4-D to a very specific single protein of 52 kD observed in vitro and in vivo may be related to known alterations of the mitochondrial function.  相似文献   

10.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferase (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rate limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate.For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1-14 C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U-14C] acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studies gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

11.
The number, size, solubility in chloroform/methanol and some aspects of the formation of the components labeled by radioactive amino acids in isolated mitochondria of rat liver and Zajdela hepatoma were studied. Isolated mitochondria were labeled with radioactive amino acids under various conditions, and the distribution of radioactivity in sodium dodecylsulfate-polyacrylamide gels after electrophoresis of mitochondrial membrane fraction was analysed. 1. Isolated mitochondria of rat liver and Zajdela hepatoma incroporated radioactive amino acids almost exclusively into the membrane fraction. Electrophoretic analysis of this fraction revealed the presence of 15 distinct peaks of radioactivity with corresponding apparent molecular weights of 10 000 to 58 000. The electrophoretic mobility of the labeled components was identical and the general pattern of the radioactivity distribution in the gel for the rat liver and the tumour mitochondria was very similar. 2. Components of the membrane fraction of rat liver mitochondria labeled in vitro displayed an unequal solubility in acidic (2 mM HC1) chloroform/methanol (2/1) mixture; as detected by sodium dodecylsulfate-polyacrylamide gel electrophoresis a single labeled component with apparent molecular weight of 10 000 was soluble in neutral chloroform/methanol. 3. Inverse relation was observed between amino acid incorporation activity of isolated mitochondria and the portion of the label incorporated into the component with apparent molecular weight 10 000. The identity of this component with that soluble in neutral chloroform/methanol mixture has been indicated. 4. The rate of incorporation of [3H]leucine by isolated Zajdela hepatoma mitochondria into the components with lower (10 000-25 000) apparent molecular weights decreased with time, whereas that into components with higher (above 25 000) apparent molecular weight remained approximately constant within the time interval tested (30 min). 5. From the total radioactivity incorporated into the membrane fraction during 5-min pulse labeling of isolated Zajdela hepatoma mitochondria by [3H]leucine up to 25% was recovered in the region of the gel corresponding to a component with apparent molecular weight 10 000. After 25 min chase the radioactivity in this region decreased about 3.5 times while the specific radioactivity of the total membrane fraction did not change significantly. The pattern of radioactivity distribution observed after the pulse was preserved by chloramphenicol. 6. Unlabeled sonicated mitochondria or postribosomal supernatant from rat liver regenerating in the presence of chloramphenicol were incubated with neutral chloroform/methanol extract of in vitro with [14C]leucine labeled rat liver mitochondria. After this incubation several labeled components with apparent molecular weights above 10 000 were recovered in the electrophoreograms of the originally unlabeled fractions.  相似文献   

12.
Isolated rat pineal glands were incubated in vitro in a medium containing [14C]dopamine or [14C]tyrosine, and the tissue contents of 14C-labelled and total dopamine and noradrenaline were determined by HPLC followed by electrochemical detection and scintillation spectrometry. During incubation with [14C]dopamine, the labelled amine accumulated in pineal glands and was partially converted into [14C]noradrenaline. Nomifensine, a neuronal amine uptake blocker, largely inhibited the accumulation of [14C]dopamine and the formation of [14C]noradrenaline. These experiments demonstrated dopamine beta-hydroxylase activity in the sympathetic nerves of the pineal gland. During incubation with [14C]tyrosine, formation of [14C]dopamine and [14C]noradrenaline was observed in the pineal tissue, indicating that noradrenaline can also be synthesized from dopamine, endogenously formed in the gland. Electrical stimulation of the stalk region of the pineal gland during incubation with [14C]dopamine enhanced the accumulation of [14C]dopamine and synthesis of [14C]noradrenaline. Electrical stimulation also enhanced the formation of [14C]dopamine during incubation with [14C]tyrosine. Compared to that at midday, the tissue content of endogenous noradrenaline at midnight was enhanced by 50% and that of dopamine by 450%. The in vitro accumulation of [14C]dopamine, as well as the synthesis of [14C]dopamine and [14C]noradrenaline, was also increased at midnight. In conclusion, sympathetic nerves in the rat pineal gland contain tyrosine hydroxylase and dopamine beta-hydroxylase, the two enzymes required for the synthesis of noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Mitochondria from beef liver oxidize isobutyrylcarnitine at approximately 50% the rate of succinate in the presence of rotenone. However, the oxidation rate of isobutyryl coenzyme A in the presence of l(-)-carnitine is very low and can be negligible in both rat and beef liver mitochondria. The limited stimulation of isobutyryl-CoA oxidation by l(-)-carnitine appears to be due to inhibition of isobutyrylcarnitine translocation rather than lack of formation of isobutyrylcarnitine. This conclusion is supported by the fact that: 1) isobutyrylcarnitine oxidation is inhibited by l(-)-carnitine; 2) some oxidation of isobutyryl-CoA is obtained when a low concentration (50 microM) of l(-)-carnitine is used; and 3) under conditions of high isobutyryl-coenzyme A and l(-)-carnitine concentrations (1 mM), isobutyryl-carnitine is produced in near theoretical amounts by these rat liver mitochondria. Other studies demonstrated that less than 25% of the carnitine isobutyryl transferase activity of beef liver mitochondria and rat liver mitochondria is located on the cytosol side of the acylcoenzyme A barrier of these mitochondria.  相似文献   

15.
A phospholipid exchange lipoprotein from the postmicrosomal supernatant of rat hepatoma 27, which stimulated in vitro the exchange of sphingomyelin between mitochondria and microsomes, was found. Sphingomyelin is incorporated into the mitochondria under incubation of this complex with rat liver mitochondria (in which sphingomyelin is absent) an microsomes. Under the same conditions the phospholipid exchange lipoproteins of rat liver do not transfer sphingomyelin form microsomes to mitochrondria.  相似文献   

16.
At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.  相似文献   

17.
Summary l-Cysteine is mainly metabolized to sulfate and taurine through cysteinesulfinate pathway. Alternatively, sulfate is formed in rat liver mitochondria via 3-mercaptopyruvate pathway. Intraperitoneal administration of 5 mmol ofl-cysteine per kg of body weight resulted in the increase in sulfate and taurine (plus hypotaurine) excretion in the 24-h urine, which corresponded to 45.3 and 29.3%, respectively, ofl-cysteine administered. Subcutaneous injection of (aminooxy)acetate, a potent inhibitor of transaminases, together withl-cysteine halved the sulfate excretion and doubled the taurine excretion. In vitro sulfate formation froml-cysteine and froml-cysteinesulfinate in rat liver mitochondria was inhibited by (aminooxy)-acetate. The sulfate-forming activity of liver mitochondria obtained from rats injected with (aminooxy) acetate was also inhibited. These results indicate that the transamination reaction is crucial in sulfate formation and in the regulation of sulfur metabolism. Sulfur equilibrium in mammals was discussed.  相似文献   

18.
Milacemide (2-n-pentylaminoacetamide) is a secondary monoamine that in the brain is converted to glycinamide and glycine. This oxidative reaction was suspected to involve the reaction of monoamine oxidase (MAO). Using mitochondrial preparations from tissues that contain MAO-A and -B (rat brain and liver), MAO-A (human placenta), and MAO-B (human platelet and bovine adrenal chromaffin cell), it has been established that mitochondria containing MAO-B rather than MAO-A oxidize (H2O2 production and glycinamide formation) milacemide. The apparent Km (30-90 microM) for milacemide oxidation by mitochondrial MAO-B preparations is significantly lower than that for milacemide oxidation by mitochondrial MAO-A (approximately 1,300 microM). In vitro MAO-B (l-deprenyl and AGN 1135) rather than MAO-A (clorgyline) selectively inhibited the oxidation of milacemide. These in vitro data are matched by ex vivo experiments where milacemide oxidation was compared to oxidation of serotonin (MAO-A) and beta-phenylethylamine (MAO-B) by brain mitochondria prepared from rats pretreated with clorgyline (0.5-10 mg/kg) and l-deprenyl (0.5-10 mg/kg). Furthermore, in vivo experiment demonstrated that l-deprenyl selectively increased the urinary excretion of [14C]milacemide and the total radioactivity with a concomitant decrease of [14C]glycinamide. Such changes were not observed after clorgyline treatment, but were evident only at doses beyond clorgyline selectivity. The present data therefore demonstrate that milacemide is a substrate for brain MAO-B, and its conversion to glycinamide, further transformed to the inhibitory neurotransmitter, glycine, mediated by this enzyme may contribute to its pharmacological activities.  相似文献   

19.
The phosphate transport protein was purified from rat liver mitochondria by extraction in an 8% (v/v) Triton X-100 buffer followed by adsorption chromatography on hydroxyapatite and Celite. SDS/polyacrylamide-gel electrophoresis (10%, w/v) demonstrated that the purified polypeptide was apparently homogeneous when stained with Coomassie Blue and had a subunit Mr of 34,000. However, lectin overlay analysis of this gel with 125I-labelled concanavalin A demonstrated the presence of several low- and high-Mr glycoprotein contaminants. To overcome this problem, mitochondria were pre-extracted with a 0.5% (v/v) Triton X-100 buffer as an additional step in the purification of phosphate transport protein. SDS/polyacrylamide gradient gel electrophoresis (14-20%, w/v) of the hydroxyapatite and Celite eluates revealed one major band of Mr 34,000 when stained with Coomassie Blue. The known thiol group sensitivity of the phosphate transporter was employed to characterize the isolated polypeptide further. Labelling studies with N-[2-3H]ethylmaleimide showed that only the 34,000-Mr band was labelled in both the hydroxyapatite and Celite fractions, when purified from rat liver mitochondria. Further confirmation of its identity has been provided with an antiserum directed against the 34,000-Mr protein. Specific partial inhibition of phosphate uptake, as measured by iso-osmotic swelling in the presence of (NH4)2HPO4, was achieved when mitoplasts (mitochondria minus outer membrane) were incubated with this antiserum. Finally, amino acid analysis of the rat liver mitochondrial phosphate/hydroxyl ion antiport protein indicates that it is similar in composition to the equivalent protein isolated from ox heart.  相似文献   

20.
Poly-A RNA extracted from the rat liver was translated in a cell-free wheat germ system and a rabbit reticulocyte lysate. The subunit of tryptophan pyrrolase precipitated by specific antiserum after synthesis in vitro has the same molecular weight as the corresponding subunit derived from the rat liver. With specific antiserum prepared against tyrosine aminotransferase, however, a radioactive protein from both the in vitro assays was precipitated with an about 5% higher molecular weight than the tyrosine aminotransferase subunit precipitated from rat liver. The immunological evidence and the comparison of the specific peptide patterns prepared by cyanogen bromide treatment showed that the in vitro product corresponds to tyrosine aminotransferase. Various concentrations of potassium or spermidine used in the wheat germ translation system did not alter the size of the enzyme subunit synthesized. The run of the tyrosine aminotransferase purified form the rat liver in the SDS-polyacrylamide gel electrophoresis was not influenced by treatment with Escherichia coli alkaline phosphatase. The possibility is discussed that the larger enzyme synthesized in vitro represents a precursor molecule which is cleaved proteolytically in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号