首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Toxic effects of excess cloned centromeres.   总被引:24,自引:7,他引:17       下载免费PDF全文
Plasmids carrying a Saccharomyces cerevisiae centromere have a copy number of one or two, whereas other yeast plasmids have high copy numbers. The number of CEN plasmids per yeast cell was made artificially high by transforming cells simultaneously with several different CEN plasmids carrying different, independently selectable markers. Some host cells carried five different CEN plasmids and an average total of 13 extra copies of CEN3. Several effects were noted. The copy number of each plasmid was unexpectedly high. The plasmids were mutually unstable. Cultures contained many dead cells. The viable host cells grew more slowly than control cells, even in nonselective medium. There was a pause in the cell cycle at or just before mitosis. We conclude that an excess of centromeres is toxic and that the copy number of centromere plasmids is low partly because of selection against cells carrying multiple centromere plasmids. The toxicity may be caused by competition between the centromeres for some factor present in limiting quantities, e.g., centromere-binding proteins, microtubules, or space on the spindle pole body.  相似文献   

4.
We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.  相似文献   

5.
V. Larionov  N. Kouprina  T. Karpova 《Gene》1984,28(2):229-235
The mitotic stabilities of hybrid plasmid Rcp21/11, which contains the replicator of yeast rDNA, have been compared for four yeast host strains of different origins. In two related strains, Saccharomyces cerevisiae A62-1G-P188 and 1A-P3812 from the Peterhof genetic stocks, the plasmid was much more stable than in strains DC5 and GRF18 from the USA stocks.The enhanced mitotic stability of Rcp21/11 in these two yeast strains is obviously attributable to a higher rate of integration of the plasmid into the chromosomal rDNA repeats of the hosts.The centromeric locus CEN3 was inserted into Rcp21/11 because it provides high mitotic and meiotic stability of plasmids with yeast replicators, due to an ordered distribution of plasmids throughout cell division. Using the new centromeric plasmid RcpCEN3, transformation of the four above-described yeast strains was carried out. It was found that, similarly to centromeric plasmids with other chromosomal replicators, RcpCEN3 remains in the cell as a single copy. In strains DC5, GRF18 and A62-1G-P188 the mitotic stability of RcpCEN3 was 20–50%, i.e., less than half that of plasmids containing locus CEN3 and other yeast repliiators, ars1, ars2 and the 2μ DNA replicator. The mitotic stability of RcpCEN3 in strains 1A-P3812 (from the Peterhof genetic stocks) for individual clones reached 85%, i.e. close to that of the other plasmids. Genetic analysis showed that the capacity of strain 1A-P3812 to stably retain RcpCEN3 has a recessive polygenic character. We suggest that the observed differences in mitotic stability of centromeric plasmid RcpCEN3 between various yeast strains reflects the differences in activity of rDNA replicator in these strains. The nature of extrachromosomal rDNA circles, found in some strains of S. cerevisiae, is discussed from the point of view of the data.  相似文献   

6.
Pedigree analysis of plasmid segregation in yeast   总被引:71,自引:0,他引:71  
A W Murray  J W Szostak 《Cell》1983,34(3):961-970
We have used pedigree analysis to investigate the mitotic segregation of circular and linear DNA plasmids in Saccharomyces cerevisae. Circular ARS plasmids, which bear putative chromosomal replication origins, have a high segregation frequency and a strong bias to segregate to the mother cell at mitosis. The segregation bias explains how the fraction of plasmid-bearing cells can be small despite the high average copy number of circular ARS plasmids. Linear ARS plasmids do not show strong segregation bias, nor does the 2 mu ori-containing plasmid YEp 13, when it is present in strains containing intact 2 mu circles. In the absence of endogenous 2 mu circles, YEp 13 behaves like an ARS plasmid, showing a strong maternal segregation bias. The presence of a centromere on circular ARS plasmids eliminates segregation bias. We discuss a model for plasmid segregation, which explains these findings and the possible biological significance of mother-daughter segregation bias.  相似文献   

7.
Genetic analysis of the mitotic transmission of minichromosomes   总被引:90,自引:0,他引:90  
D Koshland  J C Kent  L H Hartwell 《Cell》1985,40(2):393-403
The fidelity of the mitotic transmission of minichromosomes in S. cerevisiae is monitored by a novel visual assay that allows one to detect changes in plasmid copy number in individual mitotic divisions. This assay is used to investigate the mitotic transmission of a plasmid containing a putative yeast origin of replication (ARS 1) and a centromere (CEN3). The rate of improper segregation for the minichromosome is 200-fold higher than observed for a normal chromosome. However, the replication of the minichromosome is stringently controlled; it overreplicates less than once per one thousand mitotic divisions. We also use this assay to isolate and characterize mutations in ARS 1 and CEN3. The mutations in ARS 1 define a new domain required for its optimal activity, and the mutations in CEN3 suggest that the integrity of element II is not essential for centromere function. Finally, the phenotypes of the mutations in ARS 1 and CEN3 are consistent with their function in replication and segregation, respectively.  相似文献   

8.
Aging in the yeast Saccharomyces cerevisiae is under the control of multiple pathways. The production and accumulation of extrachromosomal rDNA circles (ERCs) is one pathway that has been proposed to bring about aging in yeast. To test this proposal, we have developed a plasmid-based model system to study the role of DNA episomes in reduction of yeast life span. Recombinant plasmids containing different replication origins, cis-acting partitioning elements, and selectable marker genes were constructed and analyzed for their effects on yeast replicative life span. Plasmids containing the ARS1 replication origin reduce life span to the greatest extent of the plasmids analyzed. This reduction in life span is partially suppressed by a CEN4 centromeric element on ARS1 plasmids. Plasmids containing a replication origin from the endogenous yeast 2 mu circle also reduce life span, but to a lesser extent than ARS1 plasmids. Consistent with this, ARS1 and 2 mu origin plasmids accumulate in approximately 7-generation-old cells, but ARS1/CEN4 plasmids do not. Importantly, ARS1 plasmids accumulate to higher levels in old cells than 2 mu origin plasmids, suggesting a correlation between plasmid accumulation and life span reduction. Reduction in life span is neither an indirect effect of increased ERC levels nor the result of stochastic cessation of growth. The presence of a fully functional 9.1-kb rDNA repeat on plasmids is not required for, and does not augment, reduction in life span. These findings support the view that accumulation of DNA episomes, including episomes such as ERCs, cause cell senescence in yeast.  相似文献   

9.
We developed a novel approach to quantitate the heterogeneity of centromere number in yeast, and the cellular capacity for excess centromeres. Small circular plasmids were constructed to contain theCUP1 metallothionein gene,ARS1 (autonomously replicating sequence) and a conditionally functional centromere (GAL1–GAL10 promoter controlled centromere). TheCUP1 gene provided a gene dosage marker, and therefore a genetic determinant of plasmid copy number. Growth of cells on glucose is permissive for centromere function, while growth on galactose renders the centromere nonfunctional and the plasmids are segregated in an asymmetric fashion. We identified lines of cells containing increased numbers of plasmids after transformation. Cell lines containing as many as five to ten active centromeres are stably maintained in the absence of genetic selection. Thus haploid yeast cells can tolerate a 50% increase in their centromere number without affecting progression through the cell cycle. This system provides the opportunity to address issues of specific cellular controls on centromere copy number.  相似文献   

10.
Mutants with high instability of chromosome III designated Chl+ (chromosome loss) were obtained after irradiation with UV the Z4221-3c1 haploid disomic for chromosome III. The Chl+ mutants can be divided into two classes: 1) CL2, CL3, CL7, CL9, CL11, CL12, CL13 with elevated level of spontaneous inter- and intragenic recombination; 2) CL4, CL8 which unstable maintenance of chromosome III not accompanied with elevation of mitotic recombination frequency. The CL4 and CL8 mutants also reveal, in contrast to other mutants, unstable maintenance of artificial mini-chromosomes with chromosomal replicator ARS1 and centromeric loci CEN3, CEN4, CEN5, CEN6, CEN11. Substitution of ARS1 for other yeast replicators (ARS2, ARS of 2 micron plasmid) leads to no stabilization of mini-chromosomes in mutants. The noncentromeric plasmids containing homologous replicator (or replicators) from Candida maltosa are maintained with the same frequency both in wild type and in mutants. So, the stability of mini-chromosomes in CL4 and CL8 is not connected with uneffective replication of these chromosomes. Instability of chromosome III and mini-chromosomes in CL4 and CL8 is controlled by two nonallelic genes designated chl14 and chl18. We suppose that these genes control the process of centromere interaction with mitotic spindle microtubules.  相似文献   

11.
Efficient expression of a foreign protein product by the yeastSaccharomyces cerevisiaerequires a stable recombinant vector present at a high number of copies per cell. A conditional centromere yeast plasmid was constructed which can be amplified to high copy number by a process of unequal partitioning at cell division, followed by selection for increased copy number. However, in the absence of selection pressure for plasmid amplification, copy number rapidly drops from 25 plasmids/cell to 6 plasmids/cell in less than 10 generations of growth. Copy number subsequently decreases from 6 plasmids/cell to 2 plasmids/cell over a span of 50 generations. A combination of flow cytometric measurement of copy number distributions and segregated mathematical modeling were applied to test the predictions of a conceptual model of conditional centromereplasmid propagation. Measured distributions of plasmid content displayed a significant subpopulation of cells with a copy number of 4-6, evenin a population whose mean copy number was 13.5. This type of copy number distribution was reproduced by a mathematical model which assumes that amaximum of 4-6 centromere plasmids per cell can be stably partitionedat cell division. The model also reproduces the observed biphasic kinetics of plasmid number instability. The agreement between simulation and experimental results provides support for the proposed model and demonstrates the utility of the flow cytometry/segregated modeling approach for the study of multicopy recombinant vector propagation.  相似文献   

12.
Functional selection and analysis of yeast centromeric DNA   总被引:73,自引:0,他引:73  
A direct selection procedure has been used to isolate 11 distinct yeast genomic DNA fragments that eliminate the extreme segregation bias characteristic of autonomously replicating yeast plasmids. The selection scheme takes advantage of the fact that the cloned ochre suppressing tRNA gene, SUP11, is lethal at high copy number and therefore causes cell death when present on an ARS plasmid that lacks a cis-acting partition function. Each of the cloned DNA sequences was mapped to specific yeast chromosomes by hybridization to chromosome-sized DNA molecules separated by alternating field electrophoresis. Ten of the cloned fragments correspond to chromosomal centromeres; one fragment corresponds to the cis-acting locus required for endogenous 2 mu plasmid stability. Nucleotide sequence comparison of the ten centromere DNAs gives a new picture of conserved centromere DNA elements.  相似文献   

13.
14.
Several members of a repetitive DNA family in the nematode Caenorhabditis elegans have been shown to express ARS and centromeric function in Saccharomyces cerevisiae. The repetitive family, denoted CeRep3, consists of dispersed repeated elements about 1 kilobase in length, present 50 to 100 times in the nematode genome. Three elements were sequenced and found to contain DNA sequences homologous to yeast ARS and CEN consensus sequences. Nematode DNA segments containing these repeats were tested for ARS and CEN (or SEG) function after ligation to shuttle vectors and introduction into yeast cells. Such nematode segments conferred ARS function to the plasmid, as judged by an increased frequency of transformation compared with control plasmids without ARS function. Some, but not all, also conferred to the plasmid increased mitotic stability, increased frequency of 2+:2- segregation in meiosis, and decreased plasmid copy number. These effects are similar to those of yeast centromeric DNA. In view of these results, we suggest that the CeRep3 repetitive family may have replication and centromeric functions in C. elegans.  相似文献   

15.
D L Ludwig  C V Bruschi 《Plasmid》1991,25(2):81-95
The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.  相似文献   

16.
M. Jayaram  Y.-Y. Li  J.R. Broach 《Cell》1983,34(1):95-104
The yeast plasmid 2μ and certain hybrid plasmids constructed from it are maintained stably and at high copy number in yeast cells. By examining various mutant hybrid 2μ plasmids, we show that these properties require the integrity of four plasmid loci. Two of these, designated REPI and REP2, are active in trans and correspond to two open coding regions of 2μ. The other two loci are active only in cis and correspond to the origin of replication and to a region, designated REP3, located several hundred bp away from the origin and consisting of direct repeats of a 62 bp sequence. We propose that the REP loci constitute a copy control system that overrides normal cellular restriction on plasmid replication and amplifies the plasmid when copy number is low.  相似文献   

17.
Direct selection of Kluyveromyces lactis resistant to the antibiotic G418 following transformation with the kanamycin resistance gene of Tn903 required the development of a procedure for producing high yields of viable spheroplasts and for the isolation of autonomous replication sequences (ARS). To obtain high yields of viable spheroplasts, cells were treated with (1) a thiol-reducing agent (L-cysteine), and (2) a high concentration of an osmotic stabilizer, 1.5 M sorbitol. Several ARS-containing plasmids were selected from a K. lactis recombinant DNA library in K. lactis and in Saccharomyces cerevisiae. Two of four ARS clones selected in K. lactis promoted transformation frequencies of 5-10 X 10(2) G418-resistant cells/micrograms of plasmid DNA. This frequency of transformation was at least twice as high as with ARS clones selected in S. cerevisiae. The stability of ARS-containing plasmids varied; after 20 generations of growth in the presence of G418, 16-38% of the cells remained resistant to the drug. In the absence of selection pressure less than 5% of the cells retained the drug-resistance phenotype. Plasmids containing the ARS1 or 2 mu replicon of S. cerevisiae failed to transform K. lactis for G418 resistance. Inclusion of S. cerevisiae centromere, CEN4, in a K. lactis ARS recombinant plasmid did not increase the stability of the plasmid in K. lactis, and marker genes on the vector segregated predominantly 4-:0+ through meiosis. We conclude that neither the ARS sequences or the centromere of S. cerevisiae was functioning in K. lactis.  相似文献   

18.
Multifunctional yeast high-copy-number shuttle vectors.   总被引:187,自引:0,他引:187  
  相似文献   

19.
20.
Site-specific recombination promotes plasmid amplification in yeast   总被引:32,自引:0,他引:32  
F C Volkert  J R Broach 《Cell》1986,46(4):541-550
All stable, naturally occurring circular yeast DNA plasmids contain a pair of long, nontandem inverted repeats that undergo frequent reciprocal recombination. This yields two plasmid inversion isomers that exist in the cell in equal numbers. In the 2 mu circle plasmid of S. cerevisiae such inversion is catalyzed by a plasmid-encoded site-specific recombinase, FLP. We show that the site-specific recombination system of 2 mu circle enables the plasmid to increase its mean intracellular copy number in yeast cells growing under nonselective conditions. This apparently occurs by a FLP-induced transient shift in the mode of replication from theta to double rolling circle as initially proposed by Futcher. This capability may ensure stable maintenance of the plasmid by enabling it to correct downward deviations in copy number that result from imprecision of the plasmid-encoded partitioning system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号