首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational model was developed to identify the sites of third body particle embedment in a total hip acetabular component surface that are most problematic in terms of roughening the overpassing regions of the femoral head counterface, leading in turn to most severely accelerated polyethylene wear. The analytical approach used was to calculate loci of acetabular sites that, during the gait cycle, overpass previously documented regions of kinetically most critical femoral head roughening. Instantaneous local contact stress and sliding distance were postulated as factors contributing to the severity of the femoral head scratching/roughening which would be expected, due to otherwise-similar particles embedded along each such acetabular overpass locus. The computational results showed that the location of debris embedment was a potent determinant of the amount of polyethylene wear acceleration expected. The data also showed that the supero-lateral aspect of the acetabular cup is consistently and by far the most problematic area for third body particle embedment.  相似文献   

2.
The present investigation focuses on total hip replacement using ceramic acetabular components. The relationship between the position of the cup and the range of motion (ROM) was investigated. A limited range of motion may cause impingement, which is defined as contact between the femoral neck and the rim of the acetabular cup. Impingement may result in wear, chipping, fracture or dislocation of the femoral head. Joint movements were simulated in a three-dimensional CAD program. The results obtained underscore the importance of correct positioning and design of the cup for achieving a ROM as close to the physiological situation as possible. With ceramic cups, the inclination angle should not be more than 45 degrees, and the antetorsion angle between 10 and 15 degrees. If the cup is too vertical, the risk of dislocation and fracture of the ceramic increases. If, on the other hand, the angle of inclination is too small, flexion and abduction will be greatly limited. The study shows that acetabular components with non-recessed ceramic inserts should not be used. Slight recession of the insert helps to avoid impingement. The ROM is reduced and the risk of impingement appreciably increased when mushroom-shaped femoral heads (XL heads) or ceramic inserts protected by a polyethylene ring are used.  相似文献   

3.
Aseptic loosening from polyethylene wear debris is the leading cause of failure for metal-on-polyethylene total hip implants. Third-body debris ingress to the bearing space results in femoral head roughening and acceleration of polyethylene wear. How third-body particles manage to enter the bearing space between the closely conforming articulating surfaces of the joint is not well understood. We hypothesize that one such mechanism is from convective fluid transport during subluxation of the total hip joint. To test this hypothesis, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated, to quantify fluid ingress into the bearing space during a leg-cross subluxation event. The results indicated that extra-articular joint fluid could be drawn nearly to the pole of the cup with even very small separations of the femoral head (<0.60mm). Debris suspended near the equator of the cup at the site of maximum fluid velocity just before the subluxation began could be transported to within 11 degrees from the cup pole. Larger head diameters resulted in increased fluid velocity at all sites around the entrance to the gap compared to smaller head sizes, with fluid velocity being greatest along the anterosuperolateral cup edge, for all head sizes. Fluid pathlines indicated that suspended debris would reach similar angular positions in the bearing space regardless of head size. Increased inset of the femoral head into the acetabular cup resulted both in higher fluid velocity and in transport of third-body debris further into the bearing space.  相似文献   

4.

Introduction

Treatment of femoral neck fractures in young adults may require total hip arthroplasty or hip hemiarthroplasty using a bipolar cup. The latter can, however, result in migration of the femoral head and poor long-term results.

Case presentation

We report a case of femoral head migration after hemiarthroplasty performed for femoral neck fracture that had occurred 22 years earlier, when the patient (a Japanese man) was 20 years old. He experienced peri-prosthetic fracture of the femur, subsequent migration of the prosthesis, and a massive bone defect of the pelvic side acetabular roof. After bone union of the femoral shaft fracture, the patient was referred to our hospital for reconstruction of the acetabular roof. Intra-operatively, we placed two alloimplants of bone from around the transplanted femoral head into the weight-bearing region of the acetabular roof using an impaction bone graft method. We then implanted an acetabular roof reinforcement plate and a cemented polyethylene cup in the position of the original acetabular cup. Eighteen months post-operatively, X-rays showed union of the transplanted bone.

Conclusions

Treatment of femoral neck fractures in young adults is usually accomplished by osteosynthesis, but it may be complicated by femoral head avascular necrosis or by infection or osteomyelitis. In such cases, once an infection has subsided, either hip hemiarthroplasty using a bipolar cup or total hip arthroplasty may be required. However, if the acetabular side articular cartilage is damaged, a bipolar cup should not be used. Total hip arthroplasty should be performed to prevent migration of the implant.  相似文献   

5.
Joint simulators are important tools in wear studies of prosthetic joint materials. The type of motion in a joint simulator is crucial with respect to the wear produced. It is widely accepted that only multidirectional motion yields realistic wear for polyethylene acetabular cups. Multidirectionality, however, is a wide concept. The type of multidirectional motion varies considerably between simulators, which may explain the large differences in observed wear rates. At present, little is known about the relationship between the type of multidirectional motion and wear. One illustrative way to compare the motions of various hip simulators is to compute tracks made on the counterface by selected points of the surface of the femoral head and acetabular cup due to the cyclic relative motion. A new computation method, based on Euler angles, was developed, and used to compute slide tracks for the three-axis motion of the hip joint in walking, and for two hip simulators, the HUT-3 and the biaxial rocking motion. The slide track patterns resulting from the gait waveforms were found to be similar to those produced by the HUT-3 simulator. This paper is the first to include a verification of the computed simulator tracks. The tracks were verified in the two simulators using sharp pins, embedded in acetabular cups, engraving distinct grooves onto the femoral heads. The engravings were identical to the computed tracks. The results clearly differed from earlier computations by another research group. This study is intended to start a thorough investigation of the relationship between the type of multidirectional motion and wear.  相似文献   

6.
For assessing migration of cups, standard X-rays or stereo radiological images (SRI) are available. In addition, software is also available for measurements. The accuracies of the various systems are established statistically, in part combined with phantoms, and compared. To date, no known phantom is available for the simulation of acetabular cup migration with account being taken of the position of the pelvis in the X-ray beam. Such an appliance covering 8 different parameters has now been developed, the cup can be moved horizontally, vertically and in the loading direction. Angular accuracy is +/- 0.5 degree, and wear of a magnitude of 0.25 mm can be simulated. Two degree elevation of the pelvis, left or right, can be simulated. The position of the pelvis around the horizontal axis permits continuous variation. This appliance can simulate migratory movements of the acetabular cup within a pelvis, and wear within the cup. In addition, the spatial position of the pelvis can be varied. The X-ray images can be used to investigate the accuracy of evaluation strategies.  相似文献   

7.
Prediction of lubricating film thickness in UHMWPE hip joint replacements   总被引:4,自引:0,他引:4  
An elastohydrodynamic lubrication model developed for a ball-in-socket configuration in a previous studies by the present authors (Jalali-Vahid et al., Thinning films and tribological interfaces, 26th Leeds-Lyon Symposium on Tribology, 2000, pp. 329-339) was applied to analyse the lubrication problem of a typical artificial hip joint replacement, consisting of an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup against a metallic or ceramic femoral head. The cup was assumed to be stationary whilst the ball was assumed to rotate at a steady angular velocity and under a constant load. A wide range of main design parameters were considered. It has been found that the predicted lubricating film thickness increases with a decrease in the radial clearance, an increase in the femoral head radius, an increase in UHMWPE thickness and a decrease in UHMWPE modulus. However, the predicted lubricating film thicknesses are not found to be sufficiently large in relation to the surface roughness of the cup and head to indicate separation of the two articulating surfaces. It should also be noted that if the design features are unable to secure full fluid film lubrication, it may be preferable to select them for minimum wear rather than maximum film thickness. For example, an increase in head radius will enhance the film thickness, but it will also increase the sliding distance and hence wear in mixed or boundary lubrication conditions. Furthermore, it is pointed out that an increase in the predicted lubricant film thickness is usually associated with an increase in the contact area, and this may cause lubricant starvation and stress concentration at the edge of the cup, and adversely affect the tribological performance of the implant. The effect of running-in process on the lubrication in UHMWPE hip joint replacements is also discussed.  相似文献   

8.
A new finite element model (FEM) based on an elasto-plastic behavior of ultra high molecular weight polyethylene (UHMWPE) was used to study the wear behavior of UHMWPE acetabular cup, which has a 32 mm diameter femoral head. The model imposed a plastic yield stress of 8 MPa on the UHMWPE so that any stresses beyond this would automatically be redistributed to its neighbor. The FEM model adopted a unique mesh design based on an open cube concept which eliminated the problems of singularities. Wear prediction combined the influences of contact stress, sliding distance and a surface wear coefficient. The new model predicted significantly higher volumetric wear rate (57 mm(3)/yr) well within the average reported clinical values. The model was also used to study the effect of friction and clearance between the acetabular cup and the femoral head. Increase in friction increased the volumetric wear rate but did not appear to affect the linear wear rate, which remained at 0.12 +/- 0.02 mm/yr. The predicted wear was sensitive to clearance. It was found that when the clearance was close to 0 and >0.5mm, severe wear occurred. The best clearance range was between 0.1 and 0.15 mm where the average linear wear rate was 0.1mm/yr and the volumetric wear was 55 mm(3)/yr. The present work indicates the importance of avoiding too tight or too loose a diametrical clearance.  相似文献   

9.
Late loosening of cemented acetabular cups is increasingly being recognized as a clinical problem. One of the factors which may contribute to loosening is high localized deformation and stress at the cement-bone interface, the magnitude of which depends on the size of the total hip replacement (THR) femoral head. The effects of varying the femoral head size, from 22 to 32 mm, on strain values measured on the surface of the cup were investigated using experimental stress analysis techniques. The largest absolute strains were recorded when loading with the 22 mm head size. Peak strain values decreased to a minimum with the 26 mm head size and increased steadily with head sizes beyond 26 mm. The selection of an acetabular cup size and corresponding femoral head size in a total hip arthroplasty should not be an arbitrary one, but should be based on scientific studies which indicate minimum states of stress within the cup and cement mantle, as well as clinical evidence that the combination of components shows a reduced incidence of failure. This study experimentally quantifies the states of stress on the surface of the acetabular cup and points to the possible existence of an optimum component size to minimize surface stress.  相似文献   

10.
The joint fluid mechanics and transport of wear particles in the prosthetic hip joint were analyzed for subluxation and flexion motion using computational fluid dynamics (CFD). The entire joint space including a moving capsule boundary was considered. It was found that particles suspended in the joint space are drawn into the joint gap between prosthesis cup and head during subluxation, which was also documented by Lundberg et al. (2007; Journal of Biomechanics 40, 1676-1685), however, wear particles remain in the joint gap. Wear particles leave the joint gap during flexion and can finally migrate to the proximal boundaries including the acetabular bone, where the particle deposition can cause osteolysis according to the established literature. Thus, the present study supports the theory of polyethylene wear particle induced osteolysis of the acetabular bone as a major factor in the loosening of hip prosthesis cups.  相似文献   

11.
In an earlier paper, the authors presented the first verified method of computation of slide tracks in the relative motion between femoral head and acetabular cup of total hip prostheses. The method was applied for gait and for two hip simulator designs, and in a subsequent paper, for another eight designs. In the present paper, the track drawn by the resultant contact force, the so-called force track, was studied in depth. The variations of sliding distance, sliding velocity and direction of sliding during a cycle, all of which are important with respect to wear, were computed for gait and for 11 hip simulator designs. Moreover, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This integral makes it possible to compare clinical wear rates with those produced by hip simulators in terms of a wear factor. For the majority of contemporary hip simulators, the integral has so far been unknown. The computations revealed considerable differences, which are likely to explain the substantial differences in wear produced by the simulators. With the most common head diameter, 28 mm, the ranges for sliding distance per cycle, mean sliding velocity, total change of direction of sliding and integral were: 19.7-34.3 mm, 19.7-49.0 mm/s, 360-1513 degrees, and 17.4-43.5 Nm, respectively.  相似文献   

12.
The range of motion (ROM) of total hip prostheses is influenced by a number of parameters. An insufficient ROM may cause impingement, which may result in subluxation, dislocation or material failure of the prostheses. In a three-dimensional CAD simulation, the position of the centre of rotation and the CCD angle of the stem were investigated. Displacement of the centre of rotation of the femoral head may be due to wear (PE cups) or to the design of the prosthesis (ceramic cups). Stems of widely differing design have been developed and implanted. The results of the present study demonstrate that the ROM is clearly reduced by increasing penetration of the femoral head. At an inclination angle of 45 degrees, a depth of penetration of 2 mm restricts flexion by about 15 degrees, and a depth of penetration of 3 mm by about 30 degrees. At smaller angles of inclination the ROM is reduced and flexion and abduction are associated with an increased risk of impingement. With steeper acetabular cup inclinations, the risk of impingement decreases, but dislocation, the risk of rim fractures (ceramic cups), and wear and penetration rates (PE cups) increase. The CCD angle of the stem should be oriented to the anatomical situation. At high CCD angles (> 135 degrees), flexion is clearly limited, in particular when there is penetration of the femoral head. For modern total hip arthroplasty, prosthetic systems characterised by precise positioning of components, minimum wear, slightly recessed inserts, and appropriate CCD angles should be used.  相似文献   

13.
Retrieved ceramic femoral heads and acetabular cups were investigated. On the basis of the case studies, the reasons for revision are discussed. Wear patterns and wear rates were found to differ from those observed in hip simulating testing. Monolithic ceramic cups showed a high wear rate. Owing to their limited range of motion, ceramic "mushroom heads" are associated with impingement that leads to a high risk of cup loosening, high wear rates and in vivo fractures. The combination of ceramic "mushroom heads" and cups is not recommended. An evaluation of complications shows that some can be explained by patient behaviour--e.g. Japanese sitting position, horse riding. Designers need to develop new concepts offering a larger range of motion, for example, with head diameters of 32 and 36 mm that reduce the risk of impingement, subluxation and dislocation, while increasing the range of motion. The potential of ceramic/ceramic coupling has been known since the 70s, and ceramic concepts for total hip replacement are currently experiencing a renaissance, although further developments are still possible.  相似文献   

14.
To isolate the primary variables influencing acetabular cup and interface stresses, we performed an evaluation of cup loading and cup support variables, using a Statistical Design of Experiments (SDOE) approach. We developed three-dimensional finite element (FEM) models of the pelvis and adjacent bone. Cup support variables included fixation mechanism (cemented or noncemented), amount of bone support, and presence of metal backing. Cup loading variables included head size and cup thickness, cup/head friction, and conformity between the cup and head. Interaction between and among variables was determined using SDOE techniques. Of the variables tested, conformity, head size, and backing emerged as significant influences on stresses. Since initially nonconforming surfaces would be expected to wear into conforming surfaces, conformity is not expected to be a clinically significant variable. This indicates that head size should be tightly toleranced during manufacturing, and that small changes in head size can have a disproportionate influence on the stress environment. In addition, attention should be paid to the use of nonmetal backed cups, in limiting cup/bone interface stresses. No combination of secondary variables could compensate for, or override the effect of, the primary variables. Based on the results using the SDOE approach, adaptive FEM models simulating the wear process may be able to limit their parameters to head size and cup backing.  相似文献   

15.
Biphasic properties of articular cartilage allow it to be an excellent bearing material and have been studied through several simplified experiments as well as finite element modelling. However, three-dimensional biphasic finite element (FE) models of the whole joint are rare. The current study was carried out to experimentally validate FE methodology for modelling hemiarthroplasty. Material properties such as equilibrium elastic modulus and permeability of porcine acetabular cartilage were initially derived by curve-fitting an experimental deformation curve with that obtained using FE. These properties were then used in the hemiarthroplasty hip joint modelling. Each porcine acetabular cup was loaded with 400N using a 34mm diameter CoCr femoral head. A specimen-specific FE model of each acetabular cup was created using μCT and a series of software processes. Each model was analysed under conditions similar to those tested experimentally. Contact stresses and contact areas predicted by the model, immediately after loading, were then compared with the corresponding experimentally measured values. Very high peak contact stresses (maximum experimental: 14.09MPa) were recorded. A maximum difference of 12.42% was found in peak contact stresses. The corresponding error for contact area was 20.69%. Due to a fairly good agreement in predicted and measured values of contact stresses and contact areas, the integrated methodology developed in this study can be used as a basis for future work. In addition, FE predicted total fluid load support was around 80% immediately after loading. This was lower than that observed in conforming contact problems involving biphasic cartilage and was due to a smaller local contact area and variable clearance making fluid exudation easier.  相似文献   

16.
Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.  相似文献   

17.
AIM: Most methods used for the determination of volumetric wear of polyethylene cups are based on the assumption that the head of the prosthesis penetrates the cup in "cylindrical" fashion. The new accurate optical method is independent of this disputable assumption. METHOD: The articulating surface of the cup is scanned with light and a data set of 60,000 pixels obtained in this way is stored in a computer. Data obtained from used cups were compared with those obtained from unused cups. The volumetric wear was calculated directly by threefold integration. To assess the changes in surface shape, the data are fitted by an ellipsoid whose long axis defines the mean direction of load. A total of 18 retrieved and 3 unused cups of different types were studied. RESULTS: The unused acetabular cups deviated only slightly from ideal hemispheres. The surfaces showed rotational symmetry, and an undulation having an amplitude of 0.1 mm between dome and equator. For all explanted cups, the assumption of cylindrical penetration of the head into the polyethylene was shown not to represent the true situation. The cup expands in all directions, and the volumetric wear is underestimated by 50% with the traditional methods. The data suggest that long-term survival may be jeopardized when the main direction of loading is centered on the dome of the cup. Ceramic heads were associated with smaller rates of volumetric wear. CONCLUSION: The new optical method is characterised by short measuring times, precision and simple application. Analysis of the wear patterns of polyethylene components using this technique may contribute to a further understanding of the complex mechanisms of aseptic loosening.  相似文献   

18.
Polyethylene wear after total hip arthroplasty may occur as a result of normal gait and as a result of subluxation and relocation with impact. Relocation of a subluxed hip may impart a moment to the cup creating sliding as well as compression at the cup liner interface. The purpose of the current study is to quantify, by a validated finite element model, the forces generated in a hip arthroplasty as a result of subluxation relocation and compare them to the forces generated during normal gait. The micromotion between the liner and acetabular shell was quantified by computing the sliding track and the deformation at several points of the interface. A finite element analysis of polyethylene liner stress and liner/cup micromotion in total hip arthroplasty was performed under two dynamic profiles. The first profile was a gait loading profile simulating the force vectors developed in the hip arthroplasty during normal gait. The second profile is generated during subluxation and subsequent relocation of the femoral head. The forces generated by subluxation relocation of a total hip arthroplasty can exceed those forces generated during normal gait. The induced micromotion at the cup polyethylene interface as a result of subluxation can exceed micromotion as a result of the normal gait cycle. This may play a significant role in the generation of backsided wear. Minimizing joint subluxation by restoring balance to the hip joint after arthroplasty should be explored as a strategy to minimize backsided wear.  相似文献   

19.
Squeaking of hip replacements with ceramic-on-ceramic bearings has put the use of this material into question despite its superior wear behavior. Squeaking has been related to implant design. The purpose of this study was to determine the influence of particular acetabular cup and femoral stem designs on the incidence of squeaking and its characteristics. The dynamic behavior of the stem, head and stem assembled with head was investigated by determining their eigenfrequencies using experimental and numerical modal analysis. Four different stem and three different cup designs were investigated. Operational system vibrations resulting in audible squeaking were reproduced in a hip simulator and related to the respective component eigenfrequencies. The applied joint load and bearing clearance were varied in the clinically relevant range. Stems with lower eigenfrequencies were related to lower squeaking frequencies and increased acoustic pressure (loudness), and therefore to a higher susceptibility to squeaking. Higher load increased the squeaking frequency, while the acoustic pressure remained unchanged. No influence of the clearance or the cup design was found. Stem design was found to have an important influence on squeaking characteristics and its incidence, confirming and explaining similar clinical observations. Cup design itself was found to have no major influence on the dynamic behavior of the system but plays an important indirect role in influencing the magnitude of friction: Squeaking only occurs if the friction in the joint articulation is sufficient to excite vibrations to audible magnitudes. If friction is low, no squeaking occurs with any of the designs investigated.  相似文献   

20.
Cup wear and inclination on the pelvic bone are significant factors, which change the contact of the articulating surfaces, thus, impacting the long-term performance of hip implants. This paper presents a finite element (FE) analysis of the contact of the dual mobility implants under the influence of cup wear and inclination. A 3D FE model of the implant was developed with the application of equivalent physiological loading and boundary conditions. Effects of cup inclination angle ranging from 45° to 60° and the wear depth ranging from 0 to 2.46 mm equivalent to up to 30 years of the implant's life on the contact pressure and von Mises stress were investigated. Simulation results show that the contact pressure and von Mises stress decrease significantly with a modest wear depth and remains quite in-sensitive to the cup inclination angle and wear depth up to 1.64 mm. With wear depth further up to 2.46 mm, the cup thickness (i.e. cup thinning on worn region) may be more predominant than increasing of contact area between the cup and the head. The wear on the inner surface of the cup is found to rule out the overall contact pressure and stress in the implant. Furthermore, individual and combined effects of both important parameters are analysed and discussed with respect to available clinical/laboratory studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号