首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to addressins expressed in the high endothelial venules (HEV) of secondary lymphoid organs. Peripheral node addressin recognized by the MECA-79 antibody is apparently part of the L-selectin ligand, but its chemical nature has been undefined. We now identify a sulfated extended core1 mucin-type O-glycan, Gal beta 1-->4(sulfo-->6)GlcNAc beta 1-->3Gal beta 1-->3GalNAc, as the MECA-79 epitope. Molecular cloning of a HEV-expressed core1-beta 1,3-N-acetylglucosaminyltransferase (Core1-beta 3GlcNAcT) enabled the construction of the 6-sulfo sialyl Lewis x on extended core1 O-glycans, recapitulating the potent L-selectin-mediated, shear-dependent adhesion observed with novel L-selectin ligands derived from core2 beta1,6-N-acetylglucosaminyltransferase-I null mice. These results identify Core1-beta 3GlcNAcT and its cognate extended core1 O-glycans as essential participants in the expression of the MECA-79-positive, HEV-specific L-selectin ligands required for lymphocyte homing.  相似文献   

2.
P-selectin glycoprotein ligand-1 (PSGL-1) interactions with selectins regulate leukocyte migration in inflammatory lesions. In mice, selectin ligand activity regulating leukocyte recruitment and lymphocyte homing into lymph nodes results from the sum of unequal contributions of fucosyltransferase (FucT)-IV and FucT-VII, with FucT-VII playing a predominant role. Here we have examined the role of human FucT-IV and -VII in conferring L-selectin, P-selectin, and E-selectin binding activities to PSGL-1. Lewis x (Le(x)) carbohydrate was generated at the CHO(dhfr)(-) cell surface by FucT-IV expression, whereas sialyl Le(x) (sLe(x)) was synthesized by FucT-VII. Both human FucT-IV and -VII had the ability to generate carbohydrate ligands that support L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a major role. Cooperation was observed between FucT-IV and -VII in recruiting L-, P-, or E-selectin-expressing cells on PSGL-1 and in regulating cell rolling velocity and stability. Additional rolling adhesion assays were performed to assess the role of Thr-57-linked core-2 O-glycans in supporting L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1. These studies confirmed that core-2 O-glycans attached to Thr-57 play a critical role in supporting L- and P-selectin-dependent rolling and revealed that additional binding sites support >75% of E-selectin-mediated rolling. The observations presented here indicate that human FucT-IV and -VII both contribute and cooperate in regulating L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a predominant role in conferring selectin binding activity to PSGL-1.  相似文献   

3.
Leukocyte trafficking involves specific recognition between P-selectin and L-selectin and PSGL-1 containing core 2-based O-glycans expressing sialyl Lewis x (SLe(x)) antigen. However, the structural identity of the glycan component(s) displayed by murine neutrophil PSGL-1 that contributes to its P-selectin counter-receptor activity has been uncertain, since these cells express little if any SLe(x) antigen, and because there have been no direct studies to examine murine PSGL-1 glycosylation. To address this uncertainty, we studied PSGL-1 glycosylation in the murine cell line WEHI-3 using metabolic-radiolabeling with (3)H-monosaccharide precursors to detect low-abundance O-glycan structures. We report that PSGL-1 from WEHI-3 cells expresses a di-sialylated core 2 O-glycan containing the SLe(x) antigen. This fucosylated O-glycan is scarce on PSGL-1 and essentially undetectable in total leukocyte glycoproteins from WEHI-3 cells. These results demonstrate that WEHI-3 cells selectively fucosylate PSGL-1 to generate functionally important core 2-based O-glycans containing the SLe(x) antigen.  相似文献   

4.
5.
L-selectin is a calcium-dependent lectin on leukocytes mediating leukocyte rolling in high endothelial venules and inflamed microvessels. Many selectin ligands require modification of glycoproteins by leukocyte core2 beta1,6-N-acetylglucosaminyltransferase (Core2GlcNAcT-I). To test the role of Core2GlcNAcT-I for L-selectin ligand biosynthesis, we investigated leukocyte rolling in venules of untreated and TNF-alpha-treated cremaster muscles and in Peyer's patch high endothelial venules (HEV) of Core2GlcNAcT-I null (core2(-/-)) mice. In the presence of blocking mAbs against P- and E-selectin, L-selectin-mediated leukocyte rolling was almost completely abolished in cremaster muscle venules of core2(-/-) mice, but not littermate control mice. By contrast, leukocyte rolling in Peyer's patch HEV was not significantly different between core2(-/-) and control mice. To probe L-selectin ligands more directly, we injected L-selectin-coated beads. These beads showed no rolling in cremaster muscle venules of core2(-/-) mice, but significant rolling in controls. In Peyer's patch HEV, beads coated with a low concentration of L-selectin showed reduced rolling in core2(-/-) mice. Beads coated with a 10-fold higher concentration of L-selectin rolled equivalently in core2(-/-) and control mice. Our data show that endothelial L-selectin ligands relevant for rolling in inflamed microvessels of the cremaster muscle are completely Core2GlcNAcT-I dependent. In contrast, L-selectin ligands in Peyer's patch HEV are only marginally affected by the absence of Core2GlcNAcT-I, but are sufficiently functional to support L-selectin-dependent leukocyte rolling in Core2GlcNAcT-I-deficient mice.  相似文献   

6.
L-selectin expressed on leukocytes is involved in lymphocyte homing to secondary lymphoid organs and leukocyte recruitment into inflamed tissue. L-selectin binds to the sulfated sialyl Lewis x (6-sulfo-sLex) epitope present on O-glycans of various glycoproteins in high endothelial venules. In addition, L-selectin interacts with the dimeric mucin P-selectin glycoprotein ligand-1 (PSGL-1) expressed on leukocytes. PSGL-1 lacks 6-sulfo-sLex but contains sulfated tyrosine residues (Tyr-SO3)at positions 46, 48, and 51 and sLex in a core 2-based O-glycan (C2-O-sLex) on Thr at position 57. The role of tyrosine sulfation and core 2 O-glycans in binding of PSGL-1 to L-selectin is not well defined. Here, we show that L-selectin binds to a glycosulfopeptide (GSP-6) modeled after the extreme N terminus of human PSGL-1, containing three Tyr-SO3 and a nearby Thr modified with C2-O-sLex. Leukocytes roll on immobilized GSP-6 in an L-selectin-dependent manner, and rolling is dependent on Tyr-SO3 and C2-O-sLex on GSP-6. The dissociation constant for binding of L-selectin to GSP-6, as measured by equilibrium gel filtration, is approximately 5 microm. Binding is dependent on Tyr-SO3 residues as well as the sialic acid and fucose residues of C2-O-sLex. Binding to an isomeric glycosulfopeptide containing three Tyr-SO3 residues and a core 1-based O-glycan expressing sLex was reduced by approximately 90%. All three Tyr-SO3 residues of GSP-6 are required for high affinity binding to L-selectin. Low affinity binding to mono- and disulfated GSPs is largely independent of the position of the Tyr-SO3 residues, except for some binding preference for an isomer sulfated on both Tyr-48 and -51. These results demonstrate that L-selectin binds with high affinity to the N-terminal region of PSGL-1 through cooperative interactions with three sulfated tyrosine residues and an appropriately positioned C2-O-sLex O-glycan.  相似文献   

7.
The HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, is highly expressed in neuronal cells and apparently plays critical roles in neuronal cell migration and axonal extension. The HNK-1 glycan synthesis is initiated by the addition of beta1,3-linked GlcA to N-acetyllactosamine followed by sulfation of the C-3 position of GlcA. The cDNAs encoding beta1,3-glucuronyltransferase (GlcAT-P) and HNK-1 sulfotransferase (HNK-1ST) have been recently cloned. Among various adhesion molecules, the neural cell adhesion molecule (NCAM) was shown to contain HNK-1 glycan on N-glycans. In the present study, we first demonstrated that NCAM also bears HNK-1 glycan attached to O-glycans when NCAM contains the O-glycan attachment scaffold, muscle-specific domain, and is synthesized in the presence of core 2 beta1,6-N-acetylglucosaminyltransferase, GlcAT-P, and HNK-1ST. Structural analysis of the HNK-1 glycan revealed that the HNK-1 glycan is attached on core 2 branched O-glycans, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAc. Using synthetic oligosaccharides as acceptors, we found that GlcAT-P and HNK-1ST almost equally act on oligosaccharides, mimicking N- and O-glycans. By contrast, HNK-1 glycan was much more efficiently added to N-glycans than O-glycans when NCAM was used as an acceptor. These results are consistent with our results showing that HNK-1 glycan is minimally attached to O-glycans of NCAM in fetal brain, heart, and the myoblast cell line, C2C12. These results combined together indicate that HNK-1 glycan can be synthesized on core 2 branched O-glycans but that the HNK-1 glycan is preferentially added on N-glycans over O-glycans of NCAM, probably because N-glycans are extended further than O-glycans attached to NCAM containing the muscle-specific domain.  相似文献   

8.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

9.
Leukocytes express L-selectin ligands critical for leukocyte-leukocyte interactions at sites of inflammation. The predominant leukocyte L-selectin ligand is P-selectin glycoprotein ligand-1 (PSGL-1), which displays appropriate sialyl Lewis x (sLex)-like carbohydrate determinants for L-selectin recognition. Among the sLex-like determinants expressed by human leukocytes is a unique carbohydrate epitope defined by the HECA-452 mAb. The HECA-452 Ag is a critical component of L-selectin ligands expressed by vascular endothelial cells. However, HECA-452 Ag expression on human leukocyte L-selectin ligands has not been assessed. In this study, the HECA-452 mAb blocked 88-99% of neutrophil rolling on, or attachment to, adherent cells expressing L-selectin in multiple experimental systems. A function-blocking anti-PSGL-1 mAb also inhibited L-selectin binding to neutrophils by 89-98%. In addition, the HECA-452 and anti-PSGL-1 mAbs blocked the majority of P-selectin binding to neutrophils. Western blot analysis revealed that PSGL-1 immunoprecipitated from neutrophils displayed HECA-452 mAb-reactive determinants and that PSGL-1 was the predominant scaffold for HECA-452 Ag display. Leukocyte L-selectin ligands also contained sulfated determinants since culturing ligand-bearing cells with NaClO3 abrogated L-selectin binding. Consistent with this, human neutrophils expressed mRNA encoding five different sulfotransferases associated with the generation of selectin ligands: CHST1, CHST2, CHST3, TPST1, and HEC-GlcNAc6ST. Therefore, the HECA-452-defined carbohydrate determinant displayed on PSGL-1 represented the predominant L-selectin and P-selectin ligand expressed by neutrophils.  相似文献   

10.
The leukocyte adhesion molecule L-selectin mediates lymphocyte homing to secondary lymphoid organs and to certain sites of inflammation. The cognate ligands for L-selectin possess the unusual sulfated tetrasaccharide epitope 6-sulfo sialyl Lewis x (Siaalpha2-->3Galbeta1-->4[Fucalpha1-->3][SO(3)-->6]GlcNAc). Sulfation of GlcNAc within sialyl Lewis x is a crucial modification for L-selectin binding, and thus, the underlying sulfotransferase may be a key modulator of lymphocyte trafficking. Four recently discovered GlcNAc-6-sulfotransferases are the first candidate contributors to the biosynthesis of 6-sulfo sLex in the context of L-selectin ligands. Here we report the in vitro activity of the four GlcNAc-6-sulfotransferases on a panel of synthetic oligosaccharide substrates that comprise structural motifs derived from sialyl Lewis x. Each enzyme preferred a terminal GlcNAc residue, and was impeded by the addition of a beta1,4-linked Gal residue (i.e., terminal LacNAc). Surprisingly, for three of the enzymes, significant activity was observed with sialylated LacNAc, and two of the enzymes were capable of detectable sulfation of GlcNAc in the context of sialyl Lewis x. On the basis of these results, we propose possible pathways for 6-sulfo sialyl Lewis x biosynthesis and suggest that sulfation may be an early committed step.  相似文献   

11.
The core 1 beta1-3-galactosyltransferase (T-synthase) transfers Gal from UDP-Gal to GalNAcalpha1-Ser/Thr (Tn antigen) to form the core 1 O-glycan Galbeta1-3GalNAcalpha1-Ser/Thr (T antigen). The T antigen is a precursor for extended and branched O-glycans of largely unknown function. We found that wild-type mice expressed the NeuAcalpha2-3Galbeta1-3GalNAcalpha1-Ser/Thr primarily in endothelial, hematopoietic, and epithelial cells during development. Gene-targeted mice lacking T-synthase instead expressed the nonsialylated Tn antigen in these cells and developed brain hemorrhage that was uniformly fatal by embryonic day 14. T-synthase-deficient brains formed a chaotic microvascular network with distorted capillary lumens and defective association of endothelial cells with pericytes and extracellular matrix. These data reveal an unexpected requirement for core 1-derived O-glycans during angiogenesis.  相似文献   

12.
Lymphocyte homing is mediated by binding of L-selectin on lymphocytes with L-selectin ligands present on high-endothelial venules (HEV) of peripheral and mesenteric lymph nodes. L-selectin ligands are specific O-linked carbohydrates, 6-sulfo sialyl Lewis X, composed of sialylated, fucosylated, and sulfated glycans. Abrogation of fucosyltransferase-VII (FucT-VII) results in almost complete loss of lymphocyte homing, but structural analysis of carbohydrates has not been carried out on FucT-VII null mice. To determine whether functional losses seen in FucT-VII null mice are caused by structural changes in carbohydrates, we elucidated the carbohydrate structure of GlyCAM-1, a major L-selectin counter-receptor. Our results show that most alpha1,3-fucosylated structures in 6-sulfo sialyl Lewis X are absent and 6-sulfo N-acetyllactosamine is increased in the mutant mice. Surprisingly, the amount of 6'-sulfated galactose (Gal) that bound to Sumbucus nigra agglutinin column was also increased. We found that structures of those oligosaccharides containing 6'-sulfated Gal are almost identical to those synthesized by keratan sulfate sulfotransferase (KSST). We then showed that overexpression of KSST suppresses the expression of sialyl Lewis X on Chinese hamster ovary (CHO) cells engineered to express sialyl Lewis X. Moreover, KSST expression in those cells suppressed lymphocyte rolling compared with mock-transfected CHO cells expressing 6-sulfo sialyl Lewis X. 6'-Sulfo sialyl Lewis X can neither be found in GlyCAM-1 from CHO cells expressing both KSST and FucT-VII nor be found in GlyCAM-1 from HEV of mice. These results combined together suggest that KSST competes with FucT-VII for the same acceptor substrate and downregulates the synthesis of L-selectin ligand by inhibiting alpha1,3-fucosylation.  相似文献   

13.
The selectins interact in important normal and pathological situations with certain sialylated, fucosylated glycoconjugate ligands containing sialyl Lewisx(Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)GlcN Ac). Much effort has gone into the synthesis of sialylated and sulfated Lewisxanalogs as competitive ligands for the selectins. Since the natural selectin ligands GlyCAM-1 and PSGL-1 carry sialyl Lewisxas part of a branched Core 2 O-linked structure, we recently synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(SE-3Galbeta1++ +-3)GalNAc1alphaOMe and found it to be a moderately superior ligand for L and P-selectin (Koenig et al. , Glycobiology 7, 79-93, 1997). Other studies have shown that sulfate esters can replace sialic acid in some selectin ligands (Yeun et al. , Biochemistry, 31, 9126-9131, 1992; Imai et al. , Nature, 361, 555, 1993). Based upon these observations, we hypothesized that Neu5Acalpha2-3Galbeta1-3GalNAc might have the capability of interacting with L- and P-selectin. To examine this hypothesis, we synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Neu5Acalpha2++ +-3Galbeta1-3)- GalNAc alpha1-OB, which was found to be 2- to 3-fold better than sialyl Lexfor P and L selectin, respectively. We also report the synthesis of an unusual structure GalNAcbeta1-4(Fucalpha1- 3)GlcNAcbeta1-OMe (GalNAc- Lewisx-O-methyl glycoside), which also proved to be a better inhibitor of L- and P-selectin than sialyl Lewisx-OMe. Combining this with our knowledge of Core 2 branched structures, we have synthesized a molecule that is 5- to 6-fold better at inhibiting L- and P-selectin than sialyl Lewisx-OMe, By contrast to unbranched structures, substitution of a sulfate ester group for a sialic acid residue in such a molecule resulted in a considerable loss of inhibition ability. Thus, the combination of a sialic acid residue on the primary (beta1-3) arm, and a modified Lexunit on the branched (beta1-6) arm on an O-linked Core 2 structure generated a monovalent synthetic oliogosaccharide inhibitor superior to SLexfor both L- and P-selectin.   相似文献   

14.
Recently we identified sialyl 6-sulfo Le(x) as a major L-selectin ligand on high endothelial venules of human peripheral lymph nodes. In this study we investigated the ligand activity of sialyl 6-sulfo Le(x) to E- and P-selectins and compared it with the binding activity of conventional sialyl Le(x), by using cultured human lymphoid cells expressing both carbohydrate determinants. The results of the recombinant selectin binding studies and the nonstatic monolayer cell adhesion assays indicated that both sialyl 6-sulfo Le(x) and conventional sialyl Le(x) served as ligand for E- and P-selectins, while L-selectin was quite specific to sialyl 6-sulfo Le(x). Anti-PSGL-1 antibodies as well as O-sialoglycoprotein endopeptidase treatment almost completely abrogated the binding of P-selectin but barely affected the binding of E-selectin, indicating that these carbohydrate determinants carried by O-glycans of PSGL-1 selectively serves as a ligand for P-selectin, while the ligand for E-selectin is not restricted to PSGL-1 nor to O-sialoglycoprotein endopeptidase-sensitive glycans. The binding of L-selectin was markedly reduced by O-sialoglycoprotein endopeptidase treatment but only minimally affected by anti-PSGL-1 antibodies, indicating that O-glycans carrying sialyl 6-sulfo Le(x) were the major L-selectin ligands, while PSGL-1 was only a minor core protein for L-selectin in these cells. These results indicated that each member of the selectin family has a distinct ligand binding specificity.  相似文献   

15.
Leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) is expressed as a homodimer and mediates leukocyte rolling through interactions with endothelial P-selectin. Previous studies have shown that PSGL-1 must be properly modified by specific glycosyltransferases including alpha1,3-fucosyltransferase-VII, core 2 beta1-6-N-glucosaminyltransferase (C2GlcNAcT-I), one or more alpha2,3-sialytransferases, and a tyrosulfotransferase. In addition, dimerization of PSGL-1 through its sole extracellular cysteine (Cys(320)) is essential for rolling on P-selectin under shear conditions. In this report, we measured the contributions of both C2GlcNAcT-I glycosylation and dimerization of PSGL-1 to adhesive bonds formed during tethering and rolling of transfected cell lines on purified P-selectin. Tethering to P-selectin under flow increased with dimerization compared with cells expressing monomeric PSGL-1 (referred to as C320A). The rolling defects (decreased cellular accumulation, PSGL-1/P-selectin bond strengths and tethering rates, and increased velocities and skip distance) demonstrated by transfectants expressing monomeric PSGL-1 could be overcome by increasing the substrate P-selectin site density and by overexpressing C2GlcNAcT-I in C320A transfectants. Two molecular weight variants of PSGL-1 were isolated from cell lines transfected with PSGL-1, C320A, and/or C2GlcNAcT-I cDNAs, and these differences in electrophoretic mobility appeared to correlate with C2GlcNAcT-I expression. C320A transfectants expressing low molecular weight PSGL-1 had lower C2GlcNAcT-I levels (measured by reactivity to core 2 specific linkage antibody, CHO-131) and compromised rolling on P-selectin (regardless of site density) compared with C320A cells with high levels of C2GlcNAcT-I and high molecular weight PSGL-1. Both C2GlcNAcT-I glycosylation and PSGL-1 dimerization increased the rate of tethering to P-selectin under flow, whereas C2GlcNAcT-I levels primarily influenced tether bond strength.  相似文献   

16.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

17.
Colonization of neutrophils by the bacterium Anaplasma phagocytophilum causes the disease human granulocytic ehrlichiosis. The pathogen also infects mice, its natural host. Like binding of P-selectin, binding of A. phagocytophilum to human neutrophils requires expression of P-selectin glycoprotein ligand-1 (PSGL-1) and alpha1-3-fucosyltransferases that construct the glycan determinant sialyl Lewis x (sLex). Binding of A. phagocytophilum to murine neutrophils, however, requires expression of alpha1-3-fucosyltransferases but not PSGL-1. To further characterize the molecular features that A. phagocytophilum recognizes, we measured bacterial binding to microspheres bearing specific glycoconjugates or to cells expressing human PSGL-1 and particular glycosyltransferases. Like P-selectin, A. phagocytophilum bound to purified human PSGL-1 and to glycopeptides modeled after the N terminus of human PSGL-1 that presented sLex on an O-glycan. Unlike P-selectin, A. phagocytophilum bound to glycopeptides that contained sLex but lacked tyrosine sulfation or a specific core-2 orientation of sLex on the O-glycan. A. phagocytophilum bound only to glycopeptides that contained a short amino acid sequence found in the N-terminal region of human but not murine PSGL-1. Unlike P-selectin, A. phagocytophilum bound to cells expressing PSGL-1 in cooperation with sLex on both N-and O-glycans. Moreover, bacteria bound to microspheres coupled independently with glycopeptide lacking sLex and with sLex lacking peptide. These results demonstrate that, unlike P-selectin, A. phagocytophilum binds cooperatively to a nonsulfated N-terminal peptide in human PSGL-1 and to sLex expressed on PSGL-1 or other glycoproteins. Distinct bacterial adhesins may mediate these cooperative interactions.  相似文献   

18.
Interactions between the leukocyte adhesion receptor L-selectin and P-selectin glycoprotein ligand-1 play an important role in regulating the inflammatory response by mediating leukocyte tethering and rolling on adherent leukocytes. In this study, we have examined the effect of post-translational modifications of PSGL-1 including Tyr sulfation and presentation of sialylated and fucosylated O-glycans for L-selectin binding. The functional importance of these modifications was determined by analyzing soluble L-selectin binding and leukocyte rolling on CHO cells expressing various glycoforms of PSGL-1 or mutant PSGL-1 targeted at N-terminal Thr or Tyr residues. Simultaneous expression of core-2 beta1,6-N-acetylglucosaminyltransferase and fucosyltransferase VII was required for optimal L-selectin binding to PSGL-1. Substitution of Thr-57 by Ala but not of Thr-44, strongly decreased L-selectin binding and leukocyte rolling on PSGL-1. Substitution of Tyr by Phe revealed that PSGL-1 Tyr-51 plays a predominant role in mediating L-selectin binding and leukocyte rolling whereas Tyr-48 has a minor role, an observation that contrasts with the pattern seen for the interactions between PSGL-1 and P-selectin where Tyr-48 plays a key role. Molecular modeling analysis of L-selectin and P-selectin interactions with PSGL-1 further supported these observations. Additional experiments showed that core-2 O-glycans attached to Thr-57 were also of critical importance in regulating the velocity and stability of leukocyte rolling. These observations pinpoint the structural characteristics of PSGL-1 that are required for optimal interactions with L-selectin and may be responsible for the specific kinetic and mechanical bond properties of the L-selectin-PSGL-1 adhesion receptor-counterreceptor pair.  相似文献   

19.
The alpha3 fucosyltransferase, FucT-VII, is one of the key glycosyltransferases involved in the biosynthesis of the sialyl Lewis X (sLex) antigen on human leukocytes. The sialyl Lewis X antigen (NeuAcalpha(2-3)Galbeta(1-4)[Fucalpha(1-3)]GlcNAc-R) is an essential component of the recruitment of leukocytes to sites of inflammation, mediating the primary interaction between circulating leukocytes and activated endothelium. In order to characterize the enzymatic properties of the leukocyte alpha3 fucosyltransferase FucT-VII, the enzyme has been expressed in Trichoplusia ni insect cells. The enzyme is capable of synthesizing both sLexand sialyl-dimeric-Lexstructures in vitro , from 3'-sialyl-lacNAc and VIM-2 structures, respectively, with only low levels of fucose transfer observed to neutral or 3'-sulfated acceptors. Studies using fucosylated NeuAcalpha(2-3)-(Galbeta(1- 4)GlcNAc)3-Me acceptors demonstrate that FucT-VII is able to synthesize both di-fucosylated and tri-fucosylated structures from mono- fucosylated precursors, but preferentially fucosylates the distal GlcNAc within a polylactosamine chain. Furthermore, the rate of fucosylation of the internal GlcNAc residues is reduced once fucose has been added to the distal GlcNAc. These results indicate that FucT-VII is capable of generating complex selectin ligands, in vitro , however the order of fucose addition to the lactosamine chain affects the rate of selectin ligand synthesis.   相似文献   

20.
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the precursor GalNAc-alpha-Ser/Thr is UDP-Gal:GalNAc-alpha-Ser/Thr beta3-galactosyltransferase (core1 beta3-Gal-T). Core 1 beta3-Gal-T activity, which requires Mn2+, was solubilized from rat liver membranes and purified 71,034-fold to apparent homogeneity (>90% purity) in 5.7% yield by ion exchange chromatography on SP-Sepharose, affinity chromatography on immobilized asialo-bovine submaxillary mucin, and gel filtration chromatography on Superose 12. The purified enzyme is free of contaminating glycosyltransferases. Two peaks of core 1 beta3-Gal-T activity were identified in the final step on Superose 12. One peak of activity contained protein bands on non-reducing SDS-PAGE of approximately 84- and approximately 86-kDa disulfide-linked dimers, whereas the second peak of activity contained monomers of approximately 43 kDa. Reducing SDS-PAGE of these proteins gave approximately 42- and approximately 43-kDa monomers. Both the 84/86-kDa dimers and the 42/43-kDa monomers have the same novel N-terminal sequence. The purified enzyme, which is remarkably stable, has an apparent Km for UDP-Gal of 630 microm and an apparent Vmax of 206 micromol/mg/h protein using GalNAcalpha1-O-phenyl as the acceptor. The reaction product was generated using asialo-bovine submaxillary mucin as an acceptor; treatment with O-glycosidase generated the expected disaccharide Galbeta1-->3GalNAc. These studies demonstrate that activity of the core 1 beta1,3-Gal-T from rat liver is contained within a single, novel, disulfide-bonded, dimeric enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号