首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors—in contrast to p75NTR-associated signaling—stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

2.
The beta-amyloid protein, component of the senile plaques found in Alzheimer brains is proteolytically derived from the beta-amyloid precursor protein (APP), a larger membrane-associated protein that is expressed in both neural and non-neural cells. Overexpression of APP might be one of the mechanisms that more directly contributes to the development of Alzheimer's disease. The APP gene expression is regulated by a number of cellular mediators including nerve growth factor (NGF) and other ligands of tyrosine kinase receptors. We have previously described that NGF increases APP mRNA levels in PC12 cells. However, the molecular mechanisms and the precise signalling pathways that mediate its regulation are not yet well understood. In the present study we present evidence that NGF, and to a lesser extent fibroblast growth factor and epidermal growth factor, stimulate APP promoter activity in PC12 cells. This induction is mediated by DNA sequences located between the nucleotides - 307 and - 15, and involves activation of the Ras-MAP kinase signalling pathway. In contrast, we have also found that NGF-induced secretion of soluble fragments of APP into the culture medium is mediated by a Ras independent mechanism.  相似文献   

3.
The transforming gene of the avian sarcoma virus CT10 encodes a fusion protein (p47gag-crk or v-Crk) containing viral Gag sequences fused to cellular sequences consisting primarily of Src homology regions 2 and 3 (SH2 and SH3 sequences). Here we report a novel function of v-Crk in the mammalian pheochromocytoma cell line, PC12, whereby stable expression of v-Crk induces accelerated differentiation, as assessed by induction of neurites following nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) treatment compared with the effect in native PC12 cells. Surprisingly, however, these cells also develop extensive neurite processes after epidermal growth factor (EGF) stimulation, an event which is not observed in native PC12 cells. Following EGF or NGF stimulation of the v-CrkPC12 cells, the v-Crk protein itself became tyrosine phosphorylated within 1 min. Moreover, in A431 cells or TrkA-PC12 cells, which overexpress EGF receptors and TrkA, respectively, a GST-CrkSH2 fusion protein was indeed capable of binding these receptors in a phosphotyrosine-dependent manner, suggesting that v-Crk can directly couple to receptor tyrosine kinase pathways in PC12 cells. In transformed fibroblasts, v-Crk binds to specific tyrosine-phosphorylated proteins of p130 and paxillin. Both of these proteins are also complexed to v-Crk in PC12 cells, as evidenced by their coprecipitation with v-Crk in detergent lysates, suggesting that common effector pathways may occur in both cell types. However, whereas PC12 cellular differentiation can occur solely by overexpression of the v-Src or oncogenic Ras proteins, that induced by v-Crk requires a growth factor stimulatory signal, possibility in a two-step process.  相似文献   

4.
M S Qiu  S H Green 《Neuron》1991,7(6):937-946
Activation of p21ras, demonstrated directly as an increase in p21ras-associated GTP, was induced rapidly but transiently by both nerve growth factor (NGF) and epidermal growth factor (EGF) in PC12 cells. The factors activate p21ras to equal extents and with virtually identical time courses. Growth factor-induced p21ras activation and tyrosine phosphorylation have similar time courses and sensitivities to genistein inhibition, indicating that p21ras activation is a result of tyrosine kinase activity. Furthermore, PC12 mutants lacking the Trk NGF receptor tyrosine kinase also lack NGF-inducible p21ras activation. The protein kinase inhibitor K252a and the methyltransferase inhibitor MTA abolish NGF-induced, but not EGF-induced, p21ras activation--effects correlated with inhibition only of NGF-induced tyrosine phosphorylation. In spite of differences in sensitivity to genistein, MTA, and K252a, EGF- and NGF-stimulated p21ras activation are not additive, implying that they do share at least one step in common.  相似文献   

5.
6.
We have investigated the roles of pp60c-src and p21c-ras proteins in transducing the nerve growth factor (NGF) and fibroblast growth factor (FGF) signals which promote the sympathetic neuronlike phenotype in PC12 cells. Neutralizing antibodies directed against either Src or Ras proteins were microinjected into fused PC12 cells. Each antibody both prevented and reversed NGF- or FGF-induced neurite growth, a prominent morphological marker for the neuronal phenotype. These data demonstrate the involvement of both pp60c-src and p21c-ras proteins in NGF and FGF actions in PC12 cells, and establish a physiological role for the pp60c-src tyrosine kinase in signal transduction pathways initiated by receptor tyrosine kinases in these cells. Additional microinjection experiments, using PC12 transfectants containing inducible v-src or ras oncogene activities, demonstrated a specific sequence of Src and Ras actions. Microinjection of anti-Ras antibody blocked v-src-induced neurite growth, but microinjection of anti-Src antibodies had no effect on ras oncogene-induced neurite growth. We propose that a cascade of Src and Ras actions, with Src acting first, is a significant feature of the signal transduction pathways for NGF and FGF. The Src-Ras cascade may define a functional cassette in the signal transduction pathways used by growth factors and other ligands whose receptors have diverse structures and whose range of actions on various cell types include mitogenesis and differentiation.  相似文献   

7.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

8.
To investigate the role of the gp140trk receptor tyrosine kinase in nerve growth factor (NGF)-induced differentiation, we have overexpressed gp140trk in the NGF-responsive PC12 cell line. Here we demonstrate that overexpression of gp140trk results in marked changes in NGF-induced differentiation. Whereas PC12 cells elaborated neurites after 2 days of continuous exposure to NGF, PC12 cells overexpressing gp140trk by 20-fold(trk-PC12) began this process within hours. Compared with wild-type PC12 cells, trk-PC12 exhibited an increase in both high and low affinity NGF-binding sites. Furthermore, trk-PC12 cells displayed an enhanced level of NGF-dependent gp140trk autophosphorylation, and this activity was sustained for many hours following ligand binding. The tyrosine phosphorylation or activity of several cellular proteins, such as PLC-gamma 1, PI-3 kinase, and Erk1 and the expression of the mRNA for the late response gene transin were also sustained as a consequence of gp140trk overexpression. The data indicate that overexpression of gp140trk in PC12 cells markedly accelerates NGF-induced differentiation pathways, possibly through the elevation of gp140trk tyrosine kinase activity.  相似文献   

9.
In PC12 cells, retinoic acid (RA) stimulates the expression of p75NGFR, a component of the nerve growth factor (NGF) receptor, as indicated by a rapid increase in p75NGFR mRNA, an increase in the binding of 125I-labeled NGF to p75NGFR, and an increase in the binding of NGF to low affinity sites. RA-treated cells are more sensitive to NGF, but not to either fibroblast growth factor or phorbol 12-myristate 13-acetate, showing that RA has a specific effect on the responsiveness of PC12 cells to NGF. Exposure to RA leads neither to an increase in the expression of mRNA for trk, another component of the NGF receptor, nor to an increase in binding to high affinity receptors, suggesting that an increase in the expression of p75NGFR is sufficient to make cells more sensitive to NGF. This work suggests that, in addition to having direct effects on gene expression, RA can indirectly modulate differentiation of neurons by modifying their expression of cell surface receptors to peptide growth factors.  相似文献   

10.
11.
12.
13.
14.
A dominant inhibitory mutation of Ha-ras which changes Ser-17 to Asn-17 in the gene product p21 [p21 (Asn-17)Ha-ras] has been used to investigate the role of ras in neuronal differentiation of PC12 cells. The growth of PC12 cells, in contrast to NIH 3T3 cells, was not inhibited by p21(Asn-17)Ha-ras expression. However, PC12 cells expressing the mutant Ha-ras protein showed a marked inhibition of morphological differentiation induced by nerve growth factor (NGF) or fibroblast growth factor (FGF). These cells, however, were still able to respond with neurite outgrowth to dibutyryl cyclic AMP and 12-O-tetradecanoylphorbol-13-acetate (TPA). Induction of early-response genes (fos, jun, and zif268) by NGF and FGF but not by TPA was also inhibited by high levels of p21(Asn-17)Ha-ras. However, lower levels of p21(Asn-17) expression were sufficient to block neuronal differentiation without inhibiting induction of these early-response genes. Induction of the secondary-response genes SCG10 and transin by NGF, like morphological differentiation, was inhibited by low levels of p21(Asn-17) whether or not induction of early-response genes was blocked. Therefore, although inhibition of ras function can inhibit early-response gene induction, this is not required to block morphological differentiation or secondary-response gene expression. These results suggest that ras proteins are involved in at least two different pathways of signal transduction from the NGF receptor, which can be distinguished by differential sensitivity to p21(Asn-17)Ha-ras. In addition, ras and protein kinase C can apparently induce early-response gene expression by independent pathways in PC12 cells.  相似文献   

15.
16.
17.
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways.  相似文献   

18.
Abstract: Suramin is a polysulfonated naphthylurea with demonstrated antineoplastic activity. Toxicity includes adrenal insufficiency and peripheral neuropathy. Although the mechanism of antitumor activity is unknown, inhibition of binding of growth factors to their receptors has been suggested. Growth factors inhibited by suramin include platelet-derived growth factor, fibroblast growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, and nerve growth factor (NGF). In these studies, suramin was shown to be cytotoxic to PC12 cells in a dose-dependent manner. At lower doses and in surviving cells, we observed the induction of neurite outgrowth. To determine the mechanism of suramin-induced neurite outgrowth, PC12 cells were exposed to suramin and/or NGF for various time periods and treated cells were analyzed, by western blot analysis, for expression of tyrosine phosphoproteins. There was a similarity in the pattern of tyrosine-phosphorylated proteins in PC12 cells stimulated with suramin or NGF. Of particular interest was the rapid phosphorylation (by 1 min) of the high-affinity NGF (TrkA) receptor. Activation of other members of the signal-transduction cascade (Shc, p21 ras , Raf-1, ERK-1) revealed similar phosphorylation levels induced by suramin and NGF. Parallel studies were performed in rat dorsal root ganglion cultures; suramin potentiated neurite outgrowth and activated the NGF receptor on these cells. This finding of specific patterns of tyrosine phosphorylation of cellular proteins in response to suramin treatment demonstrated that suramin is a partial agonist for the NGF receptor in both PC12 cells and dorsal root ganglion neurons.  相似文献   

19.
The beta-PDGF receptor induces neuronal differentiation of PC12 cells.   总被引:19,自引:0,他引:19       下载免费PDF全文
Expression of the mouse beta-PDGF receptor by gene transfer confers PDGF-dependent and reversible neuronal differentiation of PC12 pheochromocytoma cells similar to that observed in response to NGF and basic FGF. A common property of the PDGF, NGF, and basic FGF-induced differentiation response is the requirement for constant exposure of cells to the growth factor. To test the hypothesis that a persistent level of growth factor receptor signaling is required for the maintenance of the neuronal phenotype, we examined the regulation of the serine/threonine-specific MAP kinases after either short- (10 min) or long-term (24 h) stimulation with growth factors. Mono Q FPLC resolved two peaks of growth factor-stimulated MAP kinase activity that coeluted with tyrosine phosphorylated 41- and 43-kDa polypeptides. MAP kinase activity was markedly stimulated (approximately 30-fold) within 5 min of exposure to several growth factors (PDGF, NGF, basic FGF, EGF, and IGF-I), but was persistently maintained at 10-fold above basal activity after 24 h only by the growth factors that also induce PC12 cell differentiation (PDGF, NGF, and basic FGF). Thus the beta-PDGF receptor is in a subset of tyrosine kinase-encoded growth factor receptors that are capable of maintaining continuous signals required for differentiation of PC12 cells. These signals include the constitutive activation of cytoplasmic serine/threonine protein kinases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号