首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of growth temperature on chloroplast responses to norflurazon and amitrole, two herbicides inhibiting carotenogenesis, at phytoene desaturation and lycopene cyclization, respectively, were studied in leaves of maize plants grown at 20 degrees C and 30 degrees C in light. At the lower temperature both chemicals caused severe photo-oxidative damage to chloroplasts. In organelles of norflurazon-treated leaves neither carotenoids nor chlorophylls were detectable and the thylakoid system was dismantled. In organelles of amitrole-treated leaves lycopene was accumulated, but small quantities of beta-carotene and xanthophylls were also produced. Moreover, some chlorophyll and a few inner membranes still persisted, although these latter were disarranged, lacking essential protein components and devoid of photosynthetic function. The increase in plant growth temperature to 30 degrees C did not change the norflurazon effects on carotenoid synthesis and the photo-oxidative damage suffered by chloroplasts. By contrast, in organelles of amitrole-treated leaves a large increase in photoprotective carotenoid biosynthesis occurred, with a consequent recovery of chlorophyll content, ultrastructural organization and thylakoid composition and functionality. This suggests that thermo-modulated steps could exist in the carotenogenic pathway, between the points inhibited by the two herbicides. Moreover it shows that, unlike C(3) species, C(4) species, such as maize, can express a strong tolerance to herbicides like amitrole, when supplied to plants growing at their optimum temperature conditions.  相似文献   

2.
Sarah Kohn  S. Klein 《Planta》1976,132(2):169-175
Summary Etioplasts were isolated from leaves of 9-day-old etiolated maize (Zea mays L.) seedlings and incubated in a relatively simple medium in light and in the dark. During the first 5 h no changes occurred in the fine structure of the isolated etioplasts in the dark. In light the size of the prolamellar bodies decreased and significantly more plastid sections without prolamellar bodies were counted. The total length of the thylakoids per plastid section increased, but there was no evidence for bi- and polythylakoid formation. It is concluded that light induces the structural transformation of the prolamellar body membranes into primary thylakoids also in isolated etioplasts.  相似文献   

3.
Etioplasts were isolated from leaves of dark-grown wheat (Triticum aestivum L. var Starke II). Galactolipid biosynthesis was assayed in an envelope-rich fraction and in the fraction containing the rest of the etioplast membranes by measuring incorporation of 14C from uridine-diphospho[14C]galactose into monogalactosyl diacylglycerol and digalactosyl diacylglycerol. More than half of the galactolipid biosynthetic capability was found in the fraction of inner etioplast membranes. This fraction was subfractioned into fractions enriched in prolamellar bodies and membrane vesicles (prothylakoids), respectively. All membrane fractions obtained from etioplasts were able to carry out galactolipid biosynthesis, although the activity was very low in prolamellar body-enriched fractions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed markedly different polypeptide patterns between the different fractions. It is concluded that the capability of galactolipid biosynthesis of etioplasts probably is not restricted to the envelope, but is also present in the inner membranes of this plastid.  相似文献   

4.
Ultrastructural autoradiographic studies after application of 3H-lysine indicate that during the transformation of the etioplasts into chlorplasts in the bean (Phaseolus vulgaris) the protein synthesis in plastids occurs mainly near the thylakoid membranes and the prolamellar bodies: most of the autoradiographic grains are placed over the structures. After 24 h postincubation in nonradioactive medium the ratio of the number of silver grains associated with thylakoids to those over stroma increases more than 2.5 times in control plants, whereas in cells treated with chloramphenicol only 1.5 times. Simultaneously in chloramphenicol-treated plants an increase in plastid envelope labelling is observed. It has been assumed that chloramphenicol, having no inhibitory effect on the synthesis and transport of proteins imported from the cytoplasm to the plastid, lowers their penetration inside the plastid as well as their incorporation into the thylakoid membrane.  相似文献   

5.
Summary Comparative studies of lipid composition were made on prolamellar bodies, envelopes and other plastid membranes separately extracted from etiolated, green or greening (intermittent or continuous light) wheat (Triticum sativum L.) leaves. The different membrane fractions were examined by electron microscopy.The major lipid was digalactosyldiglyceride in the envelopes and prolamellar bodies and monogalactosyldiglyceride in stroma lamellae and grana. Phosphatidylcholine represented 60% of total phospholipids in the envelopes, 30% in prolamellar bodies and 14% in grana. All types of envelopes had the same lipid proportions.For all lipids the lowest fatty acid unsaturation was always found in the envelope membranes. The relative amount of {ie193-1} acid in the phosphatidylglycerol of envelopes increased from 4% (etioplasts) to an average of 15% (etiochloroplasts and chloroplasts).Abbreviations DGDG digalactosyldiglyceride - MGDG monogalactosyldiglyceride - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PS phosphatidylserine - SL sulfolipid  相似文献   

6.
The biosynthesis of chlorophyll is a strictly light-dependent multistep process in higher plants. The light-dependent step is catalysed by NADPH:protochlorophyllide oxidoreductase (POR, EC.1.6.99.1), which reduces protochlorophyllide (Pchlide) to chlorophyllide (Chlide). POR is nucleus-encoded and post-translationally imported into plastids. It has been proposed that the import of a POR protein isozyme (PORA) is totally dependent on Pchlide and uses a novel import pathway. This proposal is based on findings that PORA import only occurs in the presence of Pchlide and that the presence of overexpressed precursor of Rubisco small subunit (pSS), a protein which is known to use the general import pathway, does not outcompete PORA import. Another study demonstrated that POR precursor protein (pPOR) can be cross-linked to one of the components in the translocation machinery, Toc75, in the absence of Pchlide, and that its import can be outcompeted by the addition of the pSS. This indicates that pSS and pPOR may use the same translocation mechanism. Thus, POR does not necessarily need Pchlide for import – which is in contrast to earlier observations – and the exact POR import mechanism remains unresolved. Once in the stroma, the POR transit peptide is cleaved off and the mature POR protein is associated to the plastid inner membranes. Formation of the correct membrane–associated, thermolysin-protected assembly is strictly dependent of NADPH. As a final step, the formation of the NADPH-Pchlide-POR complex occurs. When POR accumulates in the membranes of proplastids, an attraction of monogalactosyl diacylglycerol (MGDG) can occur, leading to the formation of prolamellar bodies (PLBs) and the development of etioplasts in darkness.  相似文献   

7.
Carotenoids are essential photoprotective and antioxidant pigments synthesized by all photosynthetic organisms. Most carotenoid biosynthetic enzymes were thought to have evolved independently in bacteria and plants. For example, in bacteria, a single enzyme (CrtI) catalyzes the four desaturations leading from the colorless compound phytoene to the red compound lycopene, whereas plants require two desaturases (phytoene and zeta-carotene desaturases) that are unrelated to the bacterial enzyme. We have demonstrated that carotenoid desaturation in plants requires a third distinct enzyme activity, the carotenoid isomerase (CRTISO), which, unlike phytoene and zeta-carotene desaturases, apparently arose from a progenitor bacterial desaturase. The Arabidopsis CRTISO locus was identified by the partial inhibition of lutein synthesis in light-grown tissue and the accumulation of poly-cis-carotene precursors in dark-grown tissue of crtISO mutants. After positional cloning, enzymatic analysis of CRTISO expressed in Escherichia coli confirmed that the enzyme catalyzes the isomerization of poly-cis-carotenoids to all-trans-carotenoids. Etioplasts of dark-grown crtISO mutants accumulate acyclic poly-cis-carotenoids in place of cyclic all-trans-xanthophylls and also lack prolamellar bodies (PLBs), the lattice of tubular membranes that defines an etioplast. This demonstrates a requirement for carotenoid biosynthesis to form the PLB. The absence of PLBs in crtISO mutants demonstrates a function for this unique structure and carotenoids in facilitating chloroplast development during the first critical days of seedling germination and photomorphogenesis.  相似文献   

8.
During skotomorphogenesis in angiosperms, NADPH:protochlorophyllide oxidoreductase (POR) forms an aggregate of photolabile NADPH-POR-protochlorophyllide (Pchlide) ternary complexes localized to the prolamellar bodies within etioplasts. During photomorphogenesis, POR catalyzes the light-dependent reduction of Pchlide a to chlorophyllide (Chlide) a, which is subsequently converted to chlorophyll (Chl). In Arabidopsis there are three structurally related POR genes, denoted PORA, PORB and PORC. The PORA and PORB proteins accumulate during skotomorphogenesis. During illumination, PORA is only transiently expressed, whereas PORB and PORC persist and are responsible for bulk Chl synthesis throughout plant development. Here we have tested whether PORA is important for skotomorphogenesis by assisting in etioplast development, and normal photomorphogenic development. Using reverse genetic approaches, we have identified the porA-1 null mutant, which contains an insertion of the maize Dissociation transposable element in the PORA gene. Additionally, we have characterized PORA RNAi lines. The porA-1 and PORA RNAi lines display severe photoautotrophic growth defects, which can be partially rescued on sucrose-supplemented growth media. Elimination of PORA during skotomorphogenesis results in reductions in the volume and frequency of prolamellar bodies, and in photoactive Pchlide conversion. The porA-1 mutant characterization thus establishes a quantitative requirement for PORA in etioplast development by demonstrating significant membrane ultrastructural and biochemical defects, in addition to suggesting PORA-specific functions in photomorphogenesis and plant development.  相似文献   

9.
Plastids affected by either iojap or chloroplast mutator fail to green, and altered plastids are maternally transmitted to subsequent generations. The ultrastructure of iojap-affected plastids indicates that these plastids contain no ribosomes and are capable of supporting little internal membrane organization in either light or dark-grown plants. Chloroplast mutator-affected plastids of light-grown plants contain some organized internal membrane structures. In dark-grown plants, chloroplast mutator-aftected plastids contain a crystalline prolamellar body, numerous vesicles, and osmiophilic granules. The chloroplast mutator-affecled etioplasts display an abnormal distribution of lamellar membranes; these membranes, rather than radiating in a spokelike pattern from the prolamellar body, are condensed into a portion of the organelle. Light causes disruption of the prolamellar body in chloroplast mutator-affected plastids without promoting the organization of a normal thylakoid membrane system. The effects of iojap and chloroplast mutator are cell autonomous and apparently influence the individual plastid, as evidenced by the persistence of heteroplastidic cells containing normal and affected plastids.  相似文献   

10.
The development of proplastids or etioplasts to chloroplast is visualized by the accumulation of chlorophyll in leaves of higher plants. The biosynthesis of chlorophyll includes a light-dependent reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This light-dependent step is catalysed by the nucleus-encoded NADPH:Pchlide oxidoreductase (POR, EC 1.6.99.1). POR is active within plastids and therefore has to be translocated over the plastid envelope membranes. The import of chloroplast proteins seems to follow a general import pathway using translocons at the outer and inner envelope membrane. POR cross-linking to Toc75, one of the major translocon components at the outer envelope membrane, indicates its use of the general import pathway. However, since variations exist within the so-called general import pathway one has to consider previous data suggesting a novel totally Pchlide-dependent import pathway of one POR isoform, PORA. The suggested Pchlide dependency of POR import is discussed since recent observations contradict this idea. In the stroma the POR transit peptide is cleaved off and the mature POR protein is targeted to the plastid inner membranes. The correct and stable association of POR to the membrane requires the cofactor NADPH. Functional activity of POR calls for formation of an NADPH–Pchlide–POR complex, a formation that probably takes place after the membrane association and is dependent on a phosphorylation reaction.  相似文献   

11.
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme in the light-induced greening of higher plants. A unique light-harvesting POR:Pchlide complexes (LHPP) has been found in barley etioplasts, but not in other plant species. Why PORs from barley, but not from other plants, can form LHPP? And its function is not well understood. We modeled the barley and Arabidopsis POR proteins and compared molecular surface. The results confirm the idea that barley PORA can form a five-unit oligomer that interacts with a single PORB. Chemical treatment experiments indicated that POR complex may be formed by dithiol oxidation of cysteines of two adjacent proteins. We further showed that LHPP assembly was needed for barley POR functions and seedling greening. On the contrary, Arabidopsis POR proteins only formed dimers, which were not related to the functions or the greening. Finally, POR complex assembly (including LHPP and POR dimers) did not affect the formation of prolamellar bodies (PLBs) that function for efficient capture of light energy for photo conversion in etioplasts.  相似文献   

12.
Summary The entire life-cycle of maize leaf etioplasts has been followed. Prolamellar bodies with different types of tubular membrane arrangement can be found in the juvenile stages of the organelles, while in mature etioplasts nearly all the prolamellar bodies exhibit an hexagonal ring arrangement, which, by optical diffraction, appears to be the most regular and compact possible.The prothylakoid membranes also undergo changes during organelle differentiation, and their different organization and arrangement produce a clear dimorphism between the etioplasts of mesophyll and bundle sheath cells.In senescent etioplasts the prothylakoids are more affected, while the prolamellar bodies appear rather stable, also in situations where protochlorophyll(ide) content is very low. The formation of clusters of osmiophilic globules is coupled with the breakdown of the etioplast membranes.  相似文献   

13.
To study if etiolation symptoms exist in plants grown under natural illumination conditions, under‐soil epicotyl segments of light‐grown pea (Pisum sativum) plants were examined and compared to those of hydroponically dark‐grown plants. Light‐, fluorescence‐ and electron microscopy, 77 K fluorescence spectroscopy, pigment extraction and pigment content determination methods were used. Etioplasts with prolamellar bodies and/or prothylakoids, protochlorophyll (Pchl) and protochlorophyllide (Pchlide) forms (including the flash‐photoactive 655 nm emitting form) were found in the (pro)chlorenchyma of epicotyl segments under 3 cm soil depth; their spectral properties were similar to those of hydroponically grown seedlings. However, differences were found in etioplast sizes and Pchlide:Pchl molar ratios, which indicate differences in the developmental rates of the under‐soil and of hydroponically developed cells. Tissue regions closer to the soil surface showed gradual accumulation of chlorophyll, and in parallel, decrease of Pchl and Pchlide. These results proved that etioplasts and Pchlide exist in soil‐covered parts of seedlings even if they have a 3–4‐cm long photosynthetically active shoot above the soil surface. This underlines that etiolation symptoms do develop under natural growing conditions, so they are not merely artificial, laboratory phenomena. Consequently, dark‐grown laboratory plants are good models to study the early stages of etioplast differentiation and the Pchlide–chlorophyllide phototransformation.  相似文献   

14.
Evolution of carotene desaturation: the complication of a simple pathway   总被引:2,自引:0,他引:2  
In a series of desaturation reactions, the trienoic structures of phytoene and diapophytoene are extended to a maximum of 15 or 11 conjugated double bonds, respectively. After the cloning of several genes from bacteria and eukaryotes, the desaturation reactions were first analyzed in a heterologous host by functional genetic complementation. In addition, different desaturases were heterologously expressed and the reactions studied in vitro. This revealed that in archaea, non-photosynthetic prokaryotes and fungi the desaturases differ significantly from convergently evolved desaturases in cyanobacteria, Chlorobaculum (old name Chlorobium) species and eukaryotic photosynthetic organisms including plants. Detailed analysis of the desaturation reactions including the determination of the substrates converted by the enzymes, the intermediates and the products formed in the reactions revealed the bacterial all-trans desaturation pathway catalyzed by a single enzyme and the cyanobacterial/plant type poly-cis desaturation pathway which involves two closely related desaturases. This indicates that in the course of evolution of carotenogenesis from bacteria via cyanobacteria to plants, the simple situation of one enzyme for the entire reaction sequence from phytoene to all-trans lycopene changed to a more complex process. Three individual enzymes, newly acquired phytoene and ζ-carotene desaturases, as well as a carotene isomerase which is phylogenetically related to CrtI are involved. Only the CrtI-type enzymes seem to have the property to catalyze cis to trans conversion of carotenes.  相似文献   

15.
The effect of barley stripe mosaic hordeivirus (BSMV) was studied on the ultrastructure of etioplasts, protochlorophyllide forms and the greening process of barley ( Hordeum vulgare cv. Pannónia) plants infected by seed transmission. The leaves of 7- to 11-day-old etiolated seedlings were examined by transmission electron microscopy, fluorescence and absorption spectroscopy. The etioplasts of infected seedlings contained smaller prolamellar bodies with less regular membrane structure, while prothylakoid content was higher than in the control. The protochlorophyllide content of virus-infected seedlings was reduced to 74% of the control. In the 77 K fluorescence spectra the relative amount of 655 nm emitting photoactive protochlorophyllide form decreased, and the amount of the 645 and 633 nm emitting forms increased in the infected leaves. A characteristic effect was observed in the process of the Shibata-shift: 40 min delay was observed in the infected leaves. The results of this work proved that BSMV infection delays or inhibits plastid development and the formation of photosynthetic apparatus.  相似文献   

16.
Low temperature fluorescence spectra (FS) and fluorescence excitation spectra (FES) of protoporphyrin IX (Proto), Mg-protoporphyrin IX and its monomethyl ester (MgProto-ME) and protochlorophyllide (Pchlide) in etiolated barley leaves treated with 5-aminolevulinic acid and/or 2,2'-dipyridyl were studied. The spectra of Proto and MgProto-ME showed a little dependence on temperature of registration and exhibited similarity to low temperature spectra in diluted organic and buffer solutions. However, a red wavelength shift for Soret bands of Proto and MgProto-ME was observed due to porphyrin interaction with bovine serum albumin in 0.05 M, Na2HPO4 solution at room temperature. Disaggregating treatments had no effect on Proto and MgProto-ME spectra in plants. These results suggested that in etiolated leaves Proto and MgProto-ME molecules were in a monomer state. The spectral properties of these molecules were determined by interaction of porphyrins with proteins and other plastid membrane components. The spectral analyses indicated an efficient energy migration from Proto and MgProto-ME molecules to active form of Pchlide which emitted at 656nm, and no energy transfer from carotenoids to porphyrins in vivo. These findings suggested that Proto and MgProto-ME from carotenoids, and close location of these porphyrins and photoactive Pchlide in etioplast membranes. The latter conclusion was strongly supported by an observation that in etiolated leaves, S-adenosyl-L-methionin:Mg-protoporphyrin IX methyltransferase, which converts MgProto into MgProtoME, were located not only in prothylakoids but also in prolamellar bodies containing photoactive Pchlide.  相似文献   

17.
The development of the prolamellar body in etioplasts of dark-grown seedlings of Phaseolus vulgaris is followed through the 8th day. From 2 to 6 days there is an increase in plastid size and starch content and synthesis of a system of porous lamellae which appear to arise, as such, from the inner component of the plastid envelope. From 6 to 8 days much of the starch disappears accompanied by rapid membrane synthesis resulting in an extensive prolamellar body. A model of the prolamellar body is discussed in which the basic structural unit is a six-pointed star with four tubules joining at each node. Observation of face views of the porous peripheral lamellae at their juncture with the prolamellar body suggests the origin of the prolamellar body by the continued contraction of the porous lamellae and the formation of interconnecting tubules between adjacent lamellae. The pores of the peripheral lamellae appear to correspond to the areas of stroma within each star module. Short lengths of membranes of individual peripheral lamellae fuse, forming short overlaps which resemble small, two-compartmented grana. It is postulated that this is the initial step in grana formation.  相似文献   

18.
The maintenance but substantial transformation of plastids was found in lowermost hypocotyl segments of soil‐grown bean plants (Phaseolus vulgaris cv. Magnum) during a 60‐day cultivation period. Although the plants were grown under natural light–dark cycles, this hypocotyl segment was under full coverage of the soil in 5–7 cm depth, thus it was never exposed to light. The 4‐day‐old plants were fully etiolated: amyloplasts, occasionally prolamellar bodies, protochlorophyllide (Pchlide) and protochlorophyll (Pchl) were found in the hypocotyls of these young seedlings. The 633 and 654 nm bands in the 77 K fluorescence emission spectra indicated the presence of Pchlide and Pchl pigments. During aging, both the Pchlide and Pchl contents increased, however, the Pchl to Pchlide ratio gradually increased. In parallel, the contribution of the 654 nm form decreased and in the spectra of the 60‐day‐old samples, the main band shifted to 631 nm, and a new form appeared with an emission maximum at 641 nm. The photoactivity had been lost; bleaching took place at continuous illumination. The inner membranes of the plastids disappeared, the amount of starch storing amyloplasts decreased. These data may indicate the general importance of plastids for plant cell metabolism, which can be the reason for their maintenance. Also the general heterogeneity of plastid forms can be concluded: in tissues not exposed to light, Pchl accumulating plastids develop and are maintained even for a long period.  相似文献   

19.
Membrane fractions containing intact etioplasts, etioplast inner membranes, prolamellar bodies or prothylakoids from wheat ( Triticum aestivum L. cv. Walde) were assayed for chlorophyll synthetase activity. Calculated on a protein basis, the etioplast inner membrane fraction showed a higher activity than the intact etioplasts. The activity was higher in the prolamellar body fraction than in the prothylakoid fraction. However, when the fractions were incubated in isolation medium with 50% (w/w) sucrose and 0.3 m M NADPH, chlorophyll synthetase activity could not be detected in the prolamellar body fraction, while the prothylakoid fraction maintained a high activity. The spectral shift to a shorter wavelength of the newly formed endogenous chlorophyllide was very rapid in the prothylakoid fraction but slow in the prolamellar body fraction. The relation between the spectral shift of chlorophyllide and the esterification activity in the fractions is discussed. Even exogenous short-wavelength chlorophyllide could not be esterified in well preserved prolamellar bodies. This indicates that chlorophyll synthetase is present in an inactive state in the prolamellar body structure. A large-scale method for the synthesis of geranylgeranylpyrophosphate, one of the substrates of the chlorophyll synthetase reaction, is also presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号