首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.  相似文献   

2.
Postconditioning, i.e., brief intermittent episodes of myocardial ischemia-reperfusion performed at the onset of reperfusion, reduces infarct size after prolonged ischemia. Our goal was to determine whether postconditioning is protective against myocardial stunning. Accordingly, conscious chronically instrumented dogs (sonomicrometry, coronary balloon occluder) were subjected to a control sequence (10 min coronary artery occlusion, CAO, followed by coronary artery reperfusion, CAR) and a week apart to postconditioning with four cycles of brief CAR and CAO performed at completion of the 10 min CAO. Three postconditioning protocols were investigated, i.e., 15 s CAR/15 s CAO (n=5), 30 s CAR/30 s CAO (n=7), and 1 min CAR/1 min CAO (n=6). Left ventricular wall thickening was abolished during CAO and similarly reduced during subsequent stunning in control and postconditioning sequences (e.g., at 1 h CAR, 33+/-4 vs. 34+/-4%, 30+/-4 vs. 30+/-4%, and 33+/-4 vs. 32+/-4% for 15 s postconditioning, 30 s postconditioning, and 1 min postconditioning vs. corresponding control, respectively). We confirmed this result in anesthetized rabbits by demonstrating that shortening of left ventricular segment length was similarly depressed after 10 min CAO in control and postconditioning sequences (4 cycles of 30 s CAR/30 s CAO). In additional rabbits, the same postconditioning protocol significantly reduced infarct size after 30 min CAO and 3 h CAR (39+/-7%, n=6 vs. 56+/-4%, n=7 of the area at risk in postconditioning vs. control, respectively). Thus, contrasting to its beneficial effects on myocardial infarction, postconditioning does not protect against myocardial stunning in dogs and rabbits. Conversely, additional episodes of ischemia-reperfusion with postconditioning do not worsen myocardial stunning.  相似文献   

3.
Statins have been shown to be cardioprotective; however, their interaction with endogenous cardioprotection by ischemic preconditioning and postconditioning is not known. In the present study, we examined if acute and chronic administration of the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor lovastatin affected the infarct size-limiting effect of ischemic preconditioning and postconditioning in rat hearts. Wistar rats were randomly assigned to the following three groups: 1) vehicle (1% methylcellulose per os for 12 days), 2) chronic lovastatin (15 mg.kg(-1).day(-1) per os for 12 days), and 3) acute lovastatin (1% methylcellulose per os for 12 days and 50 micromol/l lovastatin in the perfusate). Hearts isolated from the three groups were either subjected to a nonconditioning (aerobic perfusion followed by 30-min coronary occlusion and 120-min reperfusion, i.e., test ischemia-reperfusion), preconditioning (three intermittent periods of 5-min ischemia-reperfusion cycles before test ischemia-reperfusion), or postconditioning (six cycles of 10-s ischemia-reperfusion after test ischemia) perfusion protocol. Preconditioning and postconditioning significantly decreased infarct size in vehicle-treated hearts. However, preconditioning failed to decrease infarct size in acute lovastatin-treated hearts, but the effect of postconditioning remained unchanged. Chronic lovastatin treatment abolished postconditioning but not preconditioning; however, it decreased infarct size in the nonconditioned group. Myocardial levels of coenzyme Q9 were decreased in both acute and chronic lovastatin-treated rats. Western blot analysis revealed that both acute and chronic lovastatin treatment attenuated the phoshorylation of Akt; however, acute but not chronic lovastatin treatment increased the phosphorylation of p42 MAPK/ERK. We conclude that, although lovastatin may lead to cardioprotection, it interferes with the mechanisms of cardiac adaptation to ischemic stress.  相似文献   

4.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

5.
Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.  相似文献   

6.
Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) mitigates transient ischemia-induced ventricular infarction and, if so, whether adrenergic neurons are involved in such cardioprotection. The hearts of anesthetized rabbits, subjected to 30 min of left anterior descending coronary arterial occlusion (CAO) followed by 3 h of reperfusion (control), were compared with those with preemptive SCS (starting 15 min before and continuing throughout the 30-min CAO) or reactive SCS (started at 1 or 28 min of CAO). For SCS, the dorsal C8-T2 segments of the spinal cord were stimulated electrically (50 Hz, 0.2 ms, 90% of motor threshold). For preemptive SCS, separate groups of animals were pretreated 15 min before SCS onset with 1) vehicle, 2) prazosin (alpha(1)-adrenoceptor blockade), or 3) timolol (beta-adrenoceptor blockade). Infarct size (IS), measured with tetrazolium, was expressed as a percentage of risk zone. In controls exposed to 30 min of CAO, IS was 36.4 +/- 9.5% (SD). Preemptive SCS reduced IS to 21.8 +/- 6.8% (P < 0.001). Preemptive SCS-mediated infarct reduction was eliminated by prazosin (36.6 +/- 8.8%) and blunted by timolol (29.4 +/- 7.5%). Reactive SCS did not reduce IS. SCS increased phosphorylation of cardiac PKC. SCS did not alter blood pressure or heart rate. We conclude that preemptive SCS reduces the size of infarcts induced by transient CAO; such cardioprotection involves cardiac adrenergic neurons.  相似文献   

7.
We have previously reported that the prolonged transient acidosis during early reperfusion mediates the cardioprotective effects in canine hearts. Recently, postconditioning has been shown to be one of the novel strategies to mediate cardioprotection. We tested the contribution of the prolonged transient acidosis to the cardioprotection of postconditioning. Open-chest anesthetized dogs subjected to 90-min occlusion of the left anterior descending coronary artery and 6-h reperfusion were divided into four groups: 1) control group; no intervention after reperfusion (n = 6); 2) postconditioning (Postcon) group; four cycles of 1-min reperfusion and 1-min reocclusion (n = 7); 3) Postcon + sodium bicarbonate (NaHCO(3)) group; four cycles of 1-min reperfusion and 1-min reocclusion with the administration of NaHCO(3) (n = 8); and 4) NaHCO(3) group; administration of NaHCO(3) without postconditioning (n = 6). Infarct size, the area at risk (AAR), collateral blood flow during ischemia, and pH in coronary venous blood were measured. The phosphorylation of Akt and extracellular signal-regulated kinase (ERK) in ischemic myocardium was assessed by Western blot analysis. Systemic hemodynamic parameters, AAR, and collateral blood flow were not different among the four groups. Postconditioning induced prolonged transient acidosis during the early reperfusion phase. Administration of NaHCO(3) completely abolished the infarct size-limiting effects of postconditioning. Furthermore, the phosphorylation of Akt and ERK in ischemic myocardium induced by postconditioning was also blunted by the cotreatment of NaHCO(3). In conclusion, postconditioning mediates its cardioprotective effects possibly via prolonged transient acidosis during the early reperfusion phase with the activation of Akt and ERK.  相似文献   

8.
Ischemic postconditioning (IPCD) significantly reduces infarct size in healthy animals and protects the human heart. Because obesity is a major risk factor of cardiovascular diseases, the effects of IPCD were investigated in 8- to 10-wk-old leptin-deficient obese (ob/ob) mice and compared with wild-type C57BL/6J (WT) mice. All animals underwent 30 min of coronary artery occlusion followed by 24 h of reperfusion associated or not with IPCD (6 cycles of 10-s occlusion, 10-s reperfusion). Additional mice were killed at 10 min of reperfusion for Western blotting. IPCD reduced infarct size by 58% in WT mice (33+/-1% vs. 14+/-3% for control and IPCD, respectively, P<0.05) but failed to induce cardioprotection in ob/ob mice (53+/-4% vs. 56+/-5% for control and IPCD, respectively). In WT mice, IPCD significantly increased the phosphorylation of Akt (+77%), ERK1/2 (+41%), and their common target p70S6K1 (+153% at Thr389 and +57% at Thr421/Ser424). In addition, the phosphorylated AMP-activated protein kinase (AMPK)-to-total AMPK ratio was also increased by IPCD in WT mice (+64%, P<0.05). This was accompanied by decreases in phosphatase and tensin homolog deleted on chromosome 10 (PTEN), MAP kinase phosphatase (MKP)-3, and protein phosphatase (PP)2C levels. In contrast, IPCD failed to increase the phosphorylation state of all these kinases in ob/ob mice, and the level of the three phosphatases was significantly increased. Thus, although IPCD reduces myocardial infarct size in healthy animals, its cardioprotective effect vanishes with obesity. The lack of enhanced phosphorylation by IPCD of Akt, ERK1/2, p70S6K1, and AMPK might partly explain the loss of cardioprotection in this experimental model of obese mice.  相似文献   

9.
The importance of the activation of mitogen-activated protein kinases (MAPK) for the cardioprotection achieved by ischemic preconditioning (IP) is still controversial. We therefore measured infarct size and p38, extracellular signal-regulated kinase (ERK), and c-Jun NH(2)-terminal kinase (JNK) MAPK phosphorylation (by biopsies) in enflurane-anesthetized pigs. After 90 min low-flow ischemia and 120 min reperfusion, infarct size averaged 18.3 +/- 12.4 (SD)% (group 1, n = 14). At similar subendocardial blood flows, IP by 10 min ischemia and 15 min reperfusion (group 2, n = 14) reduced infarct size to 6.2 +/- 5.1% (P < 0.05). An inconsistent increase in p38, ERK, and p54 JNK phosphorylation (by Western blot) was found during IP; p46 JNK phosphorylation increased with the subsequent reperfusion. At 8 min of the sustained ischemia, p38, ERK, and p54 JNK phosphorylation were increased with no difference between groups (medians: p38: 207% of baseline in group 1 vs. 153% in group 2; ERK: 142 vs. 144%; p54 JNK: 171 vs. 155%, respectively). MAPK phosphorylation and reduction of infarct size by IP were not correlated, thus not supporting the concept of a causal role of MAPK in mediating cardioprotection by IP.  相似文献   

10.
The aim of this study was to determine whether erythropoietin (EPO) affords additional cardioprotection to the preconditioned myocardium by enhanced phosphorylation of Akt, STAT3, or glycogen synthase kinase-3beta (GSK-3 beta). Preconditioning (PC) with 5-min ischemia/5-min reperfusion and EPO (5,000 U/kg iv) reduced infarct size (as % of area at risk, %IS/AR) after 20-min ischemia in rat hearts in situ from 56.5 +/- 1.8% to 25.2 +/- 2.1% and to 36.2 +/- 2.8%, respectively. PC-induced protection was significantly inhibited by a protein kinase C inhibitor, chelerythrine (5 mg/kg), and slightly blunted by a phosphatidylinositol-3-kinase inhibitor, wortmannin (15 microg/kg). The opposite pattern of inhibition was observed for EPO-induced protection. The combination of PC and EPO further reduced %IS/AR to 8.9 +/- 1.9%, and this protection was inhibited by chelerythrine and wortmannin. The additive effects of PC and EPO on infarct size were mirrored by their effects on the level of phosphorylated GSK-3 beta at 5 min after reperfusion but not their effects on the level of phospho-Akt or phospho-STAT3. To mimic phosphorylation-induced inhibition of GSK-3 beta activity, SB-216763 (SB), a GSK-3 beta inhibitor, was administered before ischemia or 5 min before reperfusion. Infarct size was significantly reduced by preischemic injection (%IS/AR = 40.4 +/- 2.2% by 0.6 mg/kg SB and 34.0 +/- 1.8% by 1.2 mg/kg SB) and also by prereperfusion injection (%IS/AR = 32.0 +/- 2.0% by 1.2 mg/kg SB). These results suggest that EPO and PC afford additive infarct size-limiting effects by additive phosphorylation of GSK-3beta at the time of reperfusion by Akt-dependent and -independent mechanisms.  相似文献   

11.
Myocardial ischemic postconditioning (PosC) describes an acquired resistance to lethal ischemia-reperfusion (I/R) injury afforded by brief episodes of I/R applied immediately after the ischemic insult. Cardioprotection is conveyed by parallel signaling pathways converging to prevent mitochondria permeability transition. Recent observations indicated that PostC is associated with free radicals generation, including nitric oxide (NO.) and superoxide (O2 .-), and that cardioprotection is abrogated by antioxidants. Since NO. And O2 . - react to form peroxynitrite, we hypothesized that postC might trigger the formation of peroxyntrite to promote cardioprotection in vivo. Rats were exposed to 45 min of myocardial ischemia followed by 3h reperfusion. PostC (3 cycles of 30 seconds ischemia/30 seconds reperfusion) was applied at the end of index ischemia. In a subgroup of rats, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (FeTPPS) was given intravenously (10 mg/kg-1) 5 minutes before PostC. Myocardial nitrotyrosine was determined as an index of peroxynitrite formation. Infarct size (colorimetric technique and plasma creatine kinase-CK-levels) and left ventricle (LV) function (micro-tip pressure transducer), were determined. A significant generation of 3-nitrotyrosine was detected just after the PostC manoeuvre. PostC resulted in a marked reduction of infarct size, CK release and LV systolic dysfunction. Treatment with FeTPPS before PostC abrogated the beneficial effects of PostC on myocardial infarct size and LV function. Thus, peroxynitrite formed in the myocardium during PostC induces cardioprotective mechanisms improving both structural and functional integrity of the left ventricle exposed to ischemia and reperfusion in vivo.  相似文献   

12.
目的:探讨乙醇后处理心肌保护作用是否与一氧化氮生成有关。方法:局部结扎冠状动脉左前降支30min,复灌120 min复制离体大鼠心肌缺血/复灌模型。心肌缺血末5 min,复灌初期10min给予乙醇50mmol/L,共灌流15 min进行乙醇后处理干预。实验随机分为五组,正常组,缺血/复灌组,乙醇后处理组,乙醇后处理+L-NAME组和乙醇后处理+苍术苷组。测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量,TTC染色法测定心肌梗死面积,硝酸还原法测定心肌组织一氧化氮(NO)含量。RT-PCR检测左心室前壁心尖组织Bc-l2和BaxmRNA的表达。结果:与单纯缺血/复灌相比,乙醇后处理明显促进了左室发展压、左室做功的恢复,降低复灌期冠脉流出液中LDH的释放和心肌梗死面积,心肌组织NO释放减少,Bc-l 2/Bax mRNA比值增高。一氧化氮合酶抑制剂L-NAME和线粒体渗透性转换孔道开放剂苍术苷均抑制了乙醇后处理心室功能的恢复、LDH释放的减少和梗死面积的降低,心肌组织NO释放进一步减少,Bc-l 2/Bax mRNA比值降低。结论:乙醇后处理的心肌保护作用可能与减少NO的释放、抑制线粒体渗透性转换孔道的开放和抑制细胞凋亡的发生有关。  相似文献   

13.
Pharmacological activation of the prosurvival kinases Akt and ERK-1/2 at reperfusion, after a period of lethal ischemia, protects the heart against ischemia-reperfusion injury. We hypothesized that ischemic preconditioning (IPC) protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion. In isolated perfused Sprague-Dawley rat hearts subjected to 35 min of lethal ischemia, the phosphorylation states of Akt, ERK-1/2, and p70 S6 kinase (p70S6K) were determined after 15 min of reperfusion, and infarct size was measured after 120 min of reperfusion. IPC induced a biphasic response in Akt and ERK-1/2 phosphorylation during the preconditioning and reperfusion phases after the period of lethal ischemia. IPC induced a fourfold increase in Akt, ERK-1/2, and p70S6K phosphorylation at reperfusion and reduced the infarct risk-to-volume ratio (56.9 +/- 5.7 and 20.9 +/- 3.6% for control and IPC, respectively, P < 0.01). Inhibiting the IPC-induced phosphorylation of Akt, ERK-1/2, and p70S6K at reperfusion with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 or the MEK-1/2 inhibitor PD-98059 abrogated IPC-induced protection (46.3 +/- 5.8, 49.2 +/- 4.0, and 20.9 +/- 3.6% for IPC + LY-294002, IPC + PD-98059, and IPC, respectively, P < 0.01), demonstrating that the phosphorylation of these kinases at reperfusion is required for IPC-induced protection. In conclusion, we demonstrate that the reperfusion phase following sustained ischemia plays an essential role in mediating IPC-induced protection. Specifically, we demonstrate that IPC protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion.  相似文献   

14.
Clinical studies on cardioprotection by preinfarct angina are ambiguous, which may involve development of tolerance to repeated episodes of ischemia. Not all preconditioning stimuli use identical signaling pathways, and because patients likely experience varying numbers of episodes of preinfarct angina of different degrees and durations, it is important to know whether myocardium tolerant to a particular preconditioning stimulus can still be protected by stimuli employing alternative signaling pathways. We tested the hypothesis that development of tolerance to a particular stimulus does not affect cardioprotection by stimuli that employ different signaling pathways. Anesthetized rats underwent classical, remote or pharmacological preconditioning. Infarct size (IS), produced by a 60-min coronary artery occlusion (CAO), was determined after 120 min of reperfusion. Preconditioning by two 15-min periods of CAO (2CAO15, an adenosine-dependent stimulus) limited IS from 69 +/- 2% to 37 +/- 6%, but when 2CAO15 was preceded by 4CAO15, protection by 2CAO15 was absent (IS = 68 +/- 1%). This development of tolerance coincided with a loss of cardiac interstitial adenosine release, whereas two 15-min infusions of adenosine (200 microg/min i.v.) still elicited cardioprotection (IS = 40 +/- 4%). Furthermore, cardioprotection was produced when 4CAO15 was followed by the adenosine-independent stimulus 3CAO3 (IS = 50 +/- 8%) or the remote preconditioning stimulus of two 15-min periods of mesenteric artery occlusion (IS = 49 +/- 6%). In conclusion, development of tolerance to cardioprotection by an adenosine-dependent preconditioning stimulus still allows protection by pharmacological or ischemic stimuli intervention employing different signaling pathways.  相似文献   

15.
Ischemic postconditioning (IPO) reduces lethal reperfusion injury under normal conditions, but its effectiveness in hypercholesterolemia (HC) is disputed. We measured the cardioprotection of IPO in hypercholesterolemic rats and determined the roles of glycogen synthase kinase-3β (GSK-3β) and the mitochondrial permeability transition pore (mPTP). Isolated rat hearts underwent 30-min global ischemia and 120-min reperfusion. Postconditioning protocol induced six cycles of 10s ischemia and 10s reperfusion at the onset of the reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride staining and cardiomyocyte apoptosis was assessed by TUNEL staining. GSK-3β phosphorylation was measured by immunoblotting. The opening of mPTP was measured by NAD+ content in myocardium. In normocholesterolemia (NC) groups, infarct size and cardiomyocyte apoptosis were significantly reduced after IPO. These reductions were completely abolished by HC, as evidenced by a similar infarct size and cardiomyocyte apoptosis observed between the IPO-HC and IR (ischemia–reperfusion)-HC groups. GSK-3β phosphorylation was significantly higher in the IPO-NC than the IPO-HC group. In addition, NAD+ content in myocardium, a marker of mPTP opening, was higher in the IPO-NC group than the IPO-HC group. In conclusion, cardioprotection of IPO is blocked by hypercholesterolemia. This might be due to the impairment of phosphorylation of GSK-3β and attenuation of mPTP opening.  相似文献   

16.
Intracellular signal transduction events in reperfusion following ischemia influence myocardial infarct development. Here we investigate the role of Rho kinase (ROCK) activation as a specific injury signal during reperfusion via attenuation of the reperfusion injury salvage kinase (RISK) pathway phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide (NO) synthase (eNOS). Rat isolated hearts underwent 35 min of left coronary artery occlusion and 120 min of reperfusion. Phosphorylation of the ROCK substrate protein complex ezrin-radixin-moesin, assessed by immunoblotting and immunofluorescence, was used as a marker of ROCK activation. Infarct size was determined by tetrazolium staining, and terminal dUTP nick-end labeling (TUNEL) positivity was used as an index of apoptosis. The ROCK inhibitors fasudil or Y-27632 given 10 min before ischemia until 10 min after reperfusion reduced infarct size (control, 34.1 +/- 3.8%; 5 microM fasudil, 18.2 +/- 3.1%; 0.3 microM Y-27632, 19.4 +/- 4.4%; 5 microM Y-27632, 9.2 +/- 2.9%). When 5 microM Y-27632 was targeted specifically during early reperfusion, robust infarct limitation was observed (14.2 +/- 2.6% vs. control 33.4 +/- 4.4%, P<0.01). The protective action of Y-27632 given at reperfusion was attenuated by wortmannin (29.2 +/- 6.1%) and N(omega)-nitro-L-arginine methyl ester (30.4 +/- 5.7%), confirming a protective mechanism involving PI3K/Akt/NO. Ezrin-radixin-moesin phosphorylation in risk zone myocardium confirmed early and sustained ROCK activation during reperfusion and its inhibition by Y-27632. Inhibition of ROCK activation at reperfusion reduced the proportion of TUNEL-positive nuclei in the infarcted region. In conclusion, ROCK activation occurs specifically during early reperfusion. Inhibition of ROCK at reperfusion onset limits infarct size through an Akt/eNOS-dependent mechanism, suggesting that ROCK activation at reperfusion may be deleterious through suppression of the RISK pathway.  相似文献   

17.
18.
Sevoflurane postconditioning has been proven to protect the hearts against ischemia/reperfusion injury, manifested mainly by improved cardiac function, reduced myocardial specific biomarker release, and decreased infarct size. This study is to observe the effects of sevoflurane postconditioning on reperfusion-induced ventricular arrhythmias and reactive oxygen species generation in Langendorff perfused rat hearts. Compared with the unprotected hearts subjected to 25 min of global ischemia followed by 30 min of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved cardiac function, reduced cardiac troponin I release, decreased infarct size and attenuated reperfusion-induced ventricular arrhythmia. Further analysis on arrhythmia during the 30 min of reperfusion showed that, sevoflurane postconditioning decreased both the duration and incidence of ventricular tachycardia and ventricular fibrillation. In the meantime, intracellular malondialdehyde and reactive oxygen species levels were also reduced. These above results demonstrate that sevoflurane postconditioning protects the hearts against ischemia/reperfusion injury and attenuates reperfusion-induced arrhythmia, which may be associated with the regulation of lipid peroxidation and reactive oxygen species generation.  相似文献   

19.
The murine in vivo model of acute myocardial infarction is increasingly used to study signal transduction pathways. However, methodological details of this model are rarely published, and durations of ischemia and reperfusion (REP) time vary considerably among different laboratories. In this study, we tested the hypothesis that infarct size (IS) is dependent on both duration of ischemia and REP time. Pentobarbital-anesthetized male C57BL/6 mice were intubated, mechanically ventilated, and instrumented for continuous monitoring of mean arterial blood pressure and heart rate. After left fourth thoracotomy, the left anterior descending coronary artery was ligated. Mice were randomly assigned to receive 30, 45, or 60 mins of coronary artery occlusion (CAO) and 120, 180, or 240 mins of REP, respectively. IS was determined with triphenyltetrazolium chloride and area at risk (AAR) with Evans blue, respectively. Arterial blood gas analysis and hemodynamics were not different among groups. Prolongation of CAO from 30 to 60 mins significantly (*P<0.05) increased IS from 18% +/- 5% to 69% +/- 3%*, from 20% +/- 2% to 69% +/- 6%* and from 42% +/- 10% to 75% +/- 2%* after 120, 180, and 240 mins REP, respectively. Moreover, IS was increased from 18% +/- 5% to 42% +/- 10%* (30 mins CAO) and from 40% +/- 3% to 72% +/- 6%* (45 mins CAO) when REP time was prolonged from 120 to 240 mins. IS was not increased when REP was prolonged from 120 to 240 mins at 60 mins CAO (69% +/- 3% vs. 75% +/- 2%). In the present study, we describe important methodological aspects of the murine in vivo model of acute myocardial infarction and provide evidence that, in this model, IS depends both on duration of ischemia and on REP time.  相似文献   

20.
The mechanism underlying interorgan preconditioning of the heart remains elusive, although a role for adenosine and activation of a neurogenic pathway has been postulated. We tested in rats the hypothesis that adenosine released by the remote ischemic organ stimulates local afferent nerves, which leads to activation of myocardial adenosine receptors. Preconditioning with a 15-min mesenteric artery occlusion (MAO15) reduced infarct size produced by a 60-min coronary artery occlusion (60-min CAO) from 68 +/- 2% to 48 +/- 4% (P < 0.05). Pretreatment with the ganglion blocker hexamethonium or 8-(p-sulfophenyl)theophylline (8-SPT) abolished the protection by MAO15. Intramesenteric artery (but not intraportal vein) infusion of adenosine (10 microg/min) was as cardioprotective as MAO15, which was also abolished by hexamethonium. Whereas administration of hexamethonium at 5 min of reperfusion following MAO15 had no effect, 8-SPT at 5 min of reperfusion abolished the protection. Permanent reocclusion of the mesenteric artery before the 60-min CAO enhanced the cardioprotection by MAO15 (30 +/- 5%), but all protection was abolished when 8-SPT was administered after reocclusion of the mesenteric artery. Together, these findings demonstrate the involvement of myocardial adenosine receptors. We therefore conclude that locally released adenosine during small intestinal ischemia stimulates afferent nerves in the mesenteric bed during early reperfusion, initiating a neurogenic pathway that leads to activation of myocardial adenosine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号