首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of spring barley were raised in 100 and 20% nutrientsolution and treated with a foliar application of Terpal, Cerone,TIBA, GA3 or BAP. The growth of individual tiller buds and tillers,the main shoot and the root system was recorded over the following15 d. Terpal and Cerone stimulated tiller bud elongation within5 d at both nutrient levels and after 15 d the number of emergedtillers was increased at the higher nutrient level. Terpal characteristicallypromoted the growth of secondary tiller buds whereas Ceronepromoted the emergence of the coleoptile tiller; both thesePGRs also retarded the development of the main shoot. TIBA increasedthe number of elongating tiller buds but this did not resultin greater tillering. GA3 reduced the number of elongating tillerbuds and restricted their growth, especially in the high nutrientregime; this was accompanied by an increase in main shoot elongation.The growth and development of tiller buds was reduced by BAPand the number of emerged tillers was reduced at 15 d in bothnutrient levels; main shoot dry weight and root elongation werealso reduced. The results are considered in relation to theoverall influence of hormonal factors and mineral supply ontiller bud outgrowth. Hordeum distichum, spring barley, tiller bud outgrowth, plant growth regulators, Terpal, Cerone, GA3, BAP, nutrient supply, apical dominance, TIBA  相似文献   

2.
Plant growth regulators were applied either to seeds or to leaves of uniculm selections of barley and wheat. None of the treatments stimulated the growth and development of tiller buds in the barley selection. In contrast, in wheat the development of tiller buds was readily stimulated and tillers were produced following treatment with Terpal, Cerone, TIBA or nitrate. In Terpal and Cerone treated plants, the stimulation of tiller bud outgrowth and tillering was accompanied by a marked retardation of growth in the main shoot. The growth of the tillers was however not sustained in any of the treatments, and so at maturity all plants were virtually uniculm. The results are discussed in relation to the different overall response of the two species, the death of tillers, and the hormonal regulation of tiller bud development.  相似文献   

3.
Foliar application of imazamethabenz at sublethal doses of 100 and 200 g a.i./ha to wild oat plants at the two-leaf stage without tillers greatly inhibited the growth of the main shoot but increased tillering. The near cessation of sheath and the main stem elongation indicated that the major effect of imazamethabenz on the main shoot was inhibition of intercalary growth. Low doses of imazameth-abenz treatment resulted in more leaves (including leaf primordia) in the main stem but did not affect mature first and second leaves. Sublethal doses of imazamethabenz only briefly inhibited tiller growth. A later increase in tillering in treated plants resulted from the stimulated resumed growth of tillers and the increased initiation of tiller buds. Such enhanced tillering mainly resulted from the release of apical dominance due to the inhibition or cessation of the main stem growth with imazamethabenz treatment. Both doses of imazamethabenz (100 and 200 g a.i./ha) significantly reduced the biomass of shoots and roots, but increased the ratio of roots/ shoots dry weight.  相似文献   

4.
In glasshouse and field experiments the source-sink relations of the main shoot of plants of spring barley were modified by tiller removal and tiller defoliation. Decreasing competition by tiller removal promoted the growth of the residual main shoot and its component parts, and the earlier tillers were removed the greater was the effect. Stem dry weight was increased four-fold in the glasshouse by early tiller removal and was doubled in the field experiment. The grain yield of the main shoot ear was increased by 26 – 30% by tiller removal compared with tillering control plants and this was due to larger grains in all spikelet positions. On the other hand increasing competition by regular tiller defoliation had relatively little effect on the growth and development of the main shoot in the glasshouse study, but in the field the main shoot grain yield was reduced by 10% compared with the control. The main effect of tiller defoliation was on the development of tillers. In the glasshouse tillers survived repeated defoliation, continued to be produced, and the majority produced grain but with fewer and smaller grains per ear than in control plants. Tiller growth was supported by the import of assimilate from the main shoot and this was accompanied by an increase in the photosynthetic rate of the main shoot leaves. In the field all defoliated tillers died within 4 wk. These responses are discussed in terms of the physiological interrelations between the main shoot and tillers.  相似文献   

5.
The patterns of growth, assimilation of 14CO2 and distribution of 14C-labelled assimilate were followed for 12 wk from sowing in individual plants of Lolium perenne grown in miniswards at either low (500 plants m-2) or high (5000 plants m-2) density. At the latter density, plants were characterised by a 50% reduction in RGR, by the production of fewer tillers, especially second- and third-order tillers, and by a reduction in mean tiller weight. All the green and senescing leaves of each tiller assimilated 14CO2 and the overall assimilatory capacity of a tiller was directly related to its dry weight. At both densities the plant consisted of a main shoot and established tillers with comparable assimilatory activities and a range of developing tillers that assimilated relatively small amounts of 14CO2. As each successive primary tiller developed it was supplied with assimilate from the main shoot and the degree of support was inversely proportional to the dry weight of the tiller. At both densities it was concluded that the first primary tiller could be regarded as an independent assimilatory unit when it reached a dry weight of about 25 mg even though some import of main shoot assimilate continued until the tiller was double this weight. The supply of assimilate to the root system was greatly reduced at both densities compared with previous observations on plants grown singly.  相似文献   

6.
The release of apical dominance by the physical destruction in situ of the apical meristem and associated leaf primordia (decapitation) promoted the growth of tillers in non-herbicide-treated wild oat plants, as indicated by increased tiller lengths and fresh weights. At 96 h after [14C] herbicide treatment following decapitation, the absorption of [14C]imazamethabenz and total translocation of radioactivity were respectively increased by 28% and 49%. By 96 h after [14C]imazamethabenz application, the radioactivity detected in the roots of decapitated plants was 45% higher than that in the roots of nondecapitated plants while the radioactivity in tillers of decapitated plants was 2.6-fold that in tillers of intact plants. Decapitation together with foliar spraying of imazamethabenz at 200 g ha–1 further reduced tiller fresh weight, greatly decreased the total tiller number, and thereafter significantly increased overall phytotoxicity by 32% as measured by total shoot fresh weight. The results of this study support the hypothesis that main shoot apical dominance limits translocation of applied imazamethabenz to lateral shoots, rendering tillers less susceptible to growth inhibition by the herbicide.  相似文献   

7.
Tillering is reduced by salinity, with the primary and secondary tillers being more affected than is the mainstem. To understand the importance of tillering in the salt tolerance of wheat plants, two contrasting genotypes of spring wheat (Triticum aestivum L.) were grown in a greenhouse under saline or non-saline conditions and were subjected to five progressive levels of detillering. Regardless of the genotype and salinity, shoot dry weight, seed yield and seed number per plant were all significantly decreased in the treatments where only one or two tillers per plant remained compared with the untouched treatment (more than three tillers), whereas these same variables per tiller tended to be increased on a per tiller (mainstem or substem tiller) basis. The increased seed yield per tiller observed with tiller reduction may be attributed to the enhanced seed number within the spikelet. Under saline conditions, the reductions in shoot dry weight, seed yield and seed number per plant for the salt-tolerant genotype Kharchia were of a greater magnitude in the treatments where only one or two tillers per plant were present compared with the untouched treatment, whereas the magnitude of this reduction in the salt-sensitive genotype Sakha 61 was decreased.  相似文献   

8.
The response of wild oat to imazamethabenz varies with the growth stage, but the role of tillers in this regard is unclear. Removal of tillers at the three-leaf stage before spraying with imazamethabenz did not significantly affect the total shoot fresh weight measured 3 weeks later. The leaf area and dry weight of intact plants at the three-leaf stage were 17–21% greater than for plants with coleoptilar and first leaf main shoot tillers (T0 and T1) removed. The greater leaf area may have increased herbicide interception per plant. Similar fresh weight reductions in main shoot, total tillers, and total shoots were found whether imazamethabenz was applied to the plant at the two-leaf without tillers or the three-leaf with two tillers stage. Imazamethabenz applied only to the main shoot reduced total shoot dry weight more than an equivalent amount of imazamethabenz applied only to tiller T1 or applied over the whole shoot. Imazamethabenz had the least inhibitory effect on whole plant growth when applied only to T1. When 14C-herbicide was applied to the first main shoot leaf of plants at the three-leaf stage with two tillers, the 14C translocated 38% to roots, 33% to the main shoot, and nearly 30% to all tillers. When 14C-herbicide was applied to the first leaf of T1 then the 14C translocated 50% to T1, 25% to the main shoot, 20% to roots, and 5% to all other tillers. The translocation pattern and fresh weight values suggested that the presence of early tillers during herbicide application neither increased nor decreased imazamethabenz efficacy in wild oat. Received June 4, 1997; accepted June 5, 1997  相似文献   

9.
Root-tiller relations were investigated in spring barley grownin soil in deep pots. The total dry wt of the root system reachedits maximum 6 weeks from sowing, when the shoot weight was only50 per cent of its value at maturity. Seminal and nodal rootscomprised 40 and 60 per cent, respectively, of the total rootdry wt at maturity; the majority of the nodal root weight wasassociated with the main shoot. The main shoot had approximatelytwice as many nodal roots as either of the first two primarytillers (T1 and T2), and the primary and secondary tillers appearinglater were very poorly rooted. Some tillers, especially secondarytillers that died prematurely, produced no nodal roots. Theweight of the seminal roots and nodal roots attached to themain shoot continued to increase up to maturity but the drywt of nodal roots on tillers declined with time. This patternof growth was closely related to the pattern of 14C assimilateddistribution within the root system. A very small proportionof 14C assimilated by the main shoot and T1 and T2 was exported.The majority of the exported assimilate went to the seminalroot system and to nodal roots attached to the main shoot. Individualnodal and seminal roots seemed to have different roles in supplyingnutrients to the shoot system, with the former mainly providing32P-phosphate to its tiller of origin and the latter generallysupplying the main shoot and primary tillers. Hordeum distichum. (L.) Lam., barley, root growth, nodal roots, seminal roots, tillering, assimilate distribution, 32P-distribution  相似文献   

10.
Effects of the environment on shoot survival were studied inwinter wheat cv. Avalon grown in microplots at a density of247 plants m–2. The incident radiation and mean temperaturewere altered during one of three periods of between 14 and 29d duration, the first (P1) starting at the end of tiller productionand the last (P3) finishing near the end of the tiller deathphase, about three weeks before anthesis. Plants were giventemperature and radiation treatments in growth rooms in twoexperiments and extra light outdoors in a third experiment:they were at other times grown outdoors. Increasing radiation by between 60 and 100 per cent during P1had negligible effects on shoot number; during P2 it alwaysdelayed tiller death but increased final ear number in onlyone experiment; during P3 it consistently increased ear numberby up to 100 m–2. Increased radiation always increasedcrop dry weight immediately after treatment but only sometimesdid this increase persist to maturity. Grain dry weight wasincreased by treatment during P3 of one experiment. Increasingthe temperature by 4 C decreased shoot number, usually onlytemporarily, by hastening death of some tillers. Warmer temperaturesdecreased crop growth after, but not during, treatment and decreasedgrain dry weight. Radiation and temperature rarely interacted. Variation in grain yield within and between experiments relatedwell to variation in number of grains m–2, which in turnrelated to variation in ear dry weight at anthesis. Triticum aestivum L., wheat, radiation, temperature, tillers, grain yield, grain number  相似文献   

11.
A field experiment was conducted to investigate the effect of growth regulators on growth characteristics such as root length, shoot length, total leaf area, number of inflorescence per plant, number of flower per inflorescence, whole plant fresh weight and whole plant dry weight. Photosynthetic characteristics were also analyzed based on the same experiment. For this, various photosynthetic pigment contents such as chlorophyll, carotenoid, anthocyanin and xanthophyll content were calculated. The conventional growth regulator abscisic acid (ABA) and non-conventional growth regulator triazole compound paclobutrazol (PBZ) were used. Root length increased due to growth regulator treatment, but shoot length decreased. Leaf area was decreased due to growth regulator treatment. The number of inflorescence increased in ABA treated plants, but it was decreased in PBZ treated plants. In ABA treated plants, the number of flowers per inflorescence was increased. In PBZ treated plants the number of inflorescence was reduced. The whole plant fresh weight (FW) and dry weight (DW) were increased in ABA and PBZ treated plants. There was an increase in chlorophyll content in growth regulator treated plants compared to control, and it was more in PBZ treated plants. The carotenoid content was also increased in ABA and PBZ treated plants.  相似文献   

12.
Summary Spraying young winter rye plants with 4,6-dinitro-o-cresol (DNOC), as a contact herbicide, initially depressed the growth rate of the plants although this subsequently increased until ultimately the yield of plant material was greater than achieved by the control plants, also apart from the herbicidal effect of the treatment.It was observed that the growth rate of the roots of the treated plants recovered sooner than did the growth rate of the aerial parts. Ultimately a greater root dry weight was produced by the treated plants than by the control plants. This was achieved before the dry weights of the aerial parts of the treated plants equalled those of the untreated plants. The shoot/root ratio of the treated plants was lower than that of the control plants and the roots of the treated plants survived longer in the deeper layers of the soil than did those of the control plants.It is suggested that the subsequent increase in shoot growth in the treated plants may be a consequence of increased uptake of nutrients from the soil by a more vigorous root system. It is concluded that the increase in root growth which follows the initial depression, after treatment of the plants with DNOC, may be due to factors within rather than outside the roots.  相似文献   

13.
Effects of net blotch on growth and yield of spring barley   总被引:1,自引:0,他引:1  
The effect of net blotch on the growth and yield of cv. Beatrice spring barley was examined in a greenhouse experiment. Separate inoculations at growth stages 21 and 34 reduced green leaf area, root weight, leaf sheath and stem weight and tiller number. The early inoculated plants, which responded and recovered more rapidly than later treated ones, suffered a loss in grain yield and this was related to the amount of disease, the loss in green leaf area and the reduction in unit leaf rate.  相似文献   

14.
A field experiment was conducted to investigate the effect of growth regulators on growth characteristics such as root length,shoot length,total leaf area,number of inflorescence per plant,number of flower per inflorescence,whole plant fresh weight and whole plant dry weight.Photosynthetic characteristics were also analyzed based on the same experiment.For this,various photosynthetic pigment contents such as chlorophyll,carotenoid,anthocyanin and xanthophyll content were calculated.The conventional growth regulator abscisic acid (ABA) and non-conventional growth regulator triazole compound paclobutrazol (PBZ) were used.Root length increased due to growth regulator treatment,but shoot length decreased.Leaf area was decreased due to growth regulator treatment.The number of inflorescence increased in ABA treated plants,but it was decreased in PBZ treated plants.In ABA treated plants,the number of flowers per inflorescence was increased.In PBZ treated plants the number of inflorescence was reduced.The whole plant fresh weight (FW) and dry weight (DW) were increased in ABA and PBZ treated plants.There was an increase in chlorophyll content in growth regulator treated plants compared to control,and it was more in PBZ treated plants.The carotenoid content was also increased in ABA and PBZ treated plants.  相似文献   

15.
Rice has shallow, weak roots, but it is unknown how much increase in yield potential could be achieved if the root/shoot ratio is corrected. Removing all tillers except the main one, in a japonica (Sakha 101) and an indica (IR64) rice cultivar, instantly increased the root/shoot ratio from 0.21 to 1.16 in Sakha 101 and from 0.16 to 1.46 in IR64. Over 30 days after detillering, the root/shoot ratios of the detillered plants decreased to 0.49 in Sakha 101 and 0.46 in IR64 but remained significantly higher than in the controls. The detillered plants showed two‐ or fourfold increase in the main tiller fresh weight, as a consequence of more positive midday leaf relative water content (RWC), and consistently higher rates of stomatal conductance and photosynthesis, but not transpiration, compared with the controls. The enhanced photosynthesis in Sakha 101 after detillering resulted from both improved water status and higher Rubisco contents whereas in IR64, increasing the Rubisco content did not contribute to improving photosynthesis. Detillering did not increase the carbohydrate contents of leaves but prevented starch depletion at the end of grain filling. The leaf protein content during vegetative and reproductive stages, the grain filling rate, the number of filled grains per panicle were greatly improved, bringing about 38.3 and 35.9% increase in the harvested grain dry weight per panicle in Sakha 101 and IR64, respectively. We provide evidence that improving the root performance by increasing the root/shoot ratio would eliminate the current limitations to photosynthesis and growth in rice.  相似文献   

16.
Several studies conducted under high input conditions have indicatedlittle susceptibility of pearl millet to water deficit untillearly grain filling, because the losses in main shoot productionwere fully compensated by increased tiller fertility. The presentstudy assessed the impact of water deficits at three developmentstages: prior to flowering (S30), at the beginning of flowering(S45), and at the end of flowering (S60) in pearl millet grownin experimental conditions similar to Sahelian farming conditions.It included a control irrigation treatment simulating the naturaldistribution of rainfall throughout the cropping season. Bothbiomass production and grain yield were severely reduced byS30 and S45, while S60 had no effect. In S30 and S45, the floweringof tillers was delayed or totally inhibited. In both of thesetreatments, the low number of productive tillers did not compensatefor damage to panicle initiation and flowering of the main shoot.All treatments maintained green leaves on the main shoot duringthe grain filling period, and in S30 leaf growth recovered frommid-season drought. These results illustrate how pearl milletmostly escapes drought by matching its phenology to the meanrainfall distribution in the Sahel. In the case of mid-seasondrought, some late productive tillers and the maintenance ofgreen leaf biomass of the main shoots limited, but did not overcome,the yield losses. This study stresses the importance of agro-ecologicalconditions in control treatments, particularly the water regimeand crop density, when assessing crop drought resistance. Key words: Drought resistance strategy, experimental conditions, main shoots, tillers, Pennisetum glaucum  相似文献   

17.
Deterioration of barley seeds, caused by storing them at high moisture contents, was associated with slower germination and seedling emergence, reduced root and shoot growth and a smaller first true leaf compared with non-deteriorated controls. Growth differences were related to meristematic activity. Plants from deteriorated seeds started to tiller later than controls, but tillering rates were similar. In the field in 1974 more tillers died after ear appearance on plants from deteriorated seeds than those on controls, but the following year similar numbers died. Grain yields from plants from deteriorated and control seeds were similar in both seasons. These results are discussed in relation to season and soil conditions.  相似文献   

18.
Frost damage can decrease nitrogen uptake by grasses over winter, and it can also decrease biomass production over the following growing season. However, it is not clear to what extent reduced nitrogen uptake over winter decreases grass production, or whether is it merely a symptom of root damage. We examined the growth response of the grass Poa pratensis L. (Kentucky bluegrass) to variation in the timing of freezing and nitrogen availability over winter in London, Ontario, Canada. All tillers were transplanted into untreated soil in early spring, and at peak seed maturation, root, shoot, and reproductive biomass were measured. There was an interaction between freezing and increased winter nitrogen availability, whereby nitrogen addition increased tiller biomass under ambient temperatures, but decreased tiller biomass in combination with a late winter freeze. The nitrogen response of ambient temperature tillers occurred primarily via increased seed production, whereas for frozen tillers seed production was generally absent. Our results support the hypothesis that nitrogen uptake over winter can increase growing season productivity in P. pratensis, but also demonstrate that increased nitrogen availability increases tiller vulnerability to frost. These results have important implications for grass responses to the alteration of soil freezing dynamics with climate change.  相似文献   

19.
通过盆栽试验,以旱作冬小麦(Triticum aestivum)为材料,分别在拔节和抽穗期对分蘖进行人工干扰,来模拟不可预测的自然干扰,对冬小麦分蘖冗余的生态学意义以及减少这些冗余对水分利用效率影响进行研究.设置3个处理:从拔节期开始剪去所有小的分蘖,仅保留主茎和一个大的分蘖(A);在拔节期剪去主茎和两个大的分蘖,保留所有小的分蘖(B);在孕穗期剪去主茎和有效分蘖,保留无效分蘖(C).没有被干扰的植物作为对照(CK).通过花期测定叶片的叶绿素含量、叶绿素荧光参数、气孔导度和蒸腾速率等生理指标来评价植物的生理与生化活性.结果显示,在拔节期和抽穗期去除主茎和大蘖后,无效分蘖的生理活性被激活,开始执行有效分蘖的功能.到花期时,这些无效分蘖已经在生理活性上满足了补充和替代有效茎的要求.虽然株高和穗的整齐度、穗数和产量显著下降,但并没有防碍小麦的繁衍子代,因此,正是这些由早期"无效分蘖"补充而来的有效茎,避免了小麦绝种的风险.而在拔节期去除无效分蘖后,对小麦产量没有显著影响,但提高了水分利用效率,和对照相比水分利用效率提高了10%.因此,可以认为小麦在分蘖上存在着对水分利用不利的生长冗余,减少这些冗余有望节约用水、提高作物的水分利用效率.  相似文献   

20.
Experiments have been carried out to assess the role of inter-tillerinteractions within plants of Lolium perenne L. cv. S24 as factorswhich could play a part in determining the growth-rate of thewhole plant. In order to do this, the effect of tiller separationon plant growth was studied as well as the influence of theremoval of different parts of the root and shoot system. Wheneverplants were supplied with nutrients by means of culture solutions,separation of tillers brought about a marked increase in theamount of dry matter produced. Root pruning and in particularthe removal of root apices brought about similar increases ingrowth. Separation of tillers in soil-grown plants did not bringabout increased growth. These results are interpreted as indicatingthat separation of tillers or the initial removal of root apicesin plants supplied with nutrients by means of culture solution,promotes root branching which brings about an increased netassimilation rate arising from an increase supply of a growth-promotingsubstance, probably a cytokinin, from the root apices. The resultsare not taken as indicative of an intertiller interaction whichrestricts the growth of intact plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号