首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract

The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)2 has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A→B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A→B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like → B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B→A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.  相似文献   

2.
Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

3.
The energy of interaction of a spermine molecule with the A - and B -forms of DNA has been calculated, assuming that the molecule of spermine is fixed in the narrow groove of the DNA helix with the formation of hydrogen bonds between the amino groups of spermine and the phosphate groups of DNA. The atom–atom potentials method was used. Optimal structures for the A-DNA–spermine and B-DNA–spermine complexes are suggested. It is shown that, in agreement with the experimental data, the interaction of the spermine molecule with the A -DNA is energetically more favorable than that with the B -DNA. Two main factors are responsible for this: (1) the distance between neighboring phosphates of the chain in A -DNA (which is about 1 Å less than that in B -DNA) corresponds better to the distance between the amino groups of the propyl part of spermine; and (2) the orientation of phosphate groups in A -DNA inside the groove is preferable for complex formation with spermine to the outside groove arrangement of the phosphates in B -DNA. These conclusions are further confirmed by the calculations for DNA–propane diamine complexes.  相似文献   

4.
Abstract

Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

5.
The (dG)n.(dC)n-containing 34mer DNA duplex [d(A2G15C15T2)]2 can be effectively converted from the B-DNA to the A-DNA conformation by neomycin, spermine and Co(NH3)6(3+). Conversion is demonstrated by a characteristic red shift in the circular dichroism spectra and dramatic NMR spectral changes in chemical shifts. Additional support comes from the substantially stronger CH6/GH8-H3'NOE intensities of the ligand-DNA complexes than those from the native DNA duplex. Such changes are consistent with a deoxyribose pucker transition from the predominate C2'-endo (S-type) to the C3'-endo (N-type). The changes for all three ligand-DNA complexes are identical, suggesting that those three complex cations share common structural motifs for the B- to A-DNA conversion. The A-DNA structure of the 4:1 complex of Co(NH3)6(3+)/d(ACCCGCGGGT) has been analyzed by NOE-restrained refinement. The structural basis of the transition may be related to the closeness of the two negatively charged sugar-phosphate backbones along the major groove in A-DNA, which can be effectively neutralized by the multivalent positively charged amine functions of these ligands. In addition, ligands like spermine or Co(NH3)6(3+) can adhere to guanine bases in the deep major groove of the double helix, as is evident from the significant direct NOE cross-peaks from the protons of Co(NH3)6(3+) to GH8, GH1 (imino) and CH4 (amino) protons. Our results point to future directions in preparing more potent derivatives of Co(NH3)6(3+) for RNA binding or the induction of A-DNA.  相似文献   

6.
S Jain  G Zon  M Sundaralingam 《Biochemistry》1989,28(6):2360-2364
The crystal structure of a complex of spermine with the DNA octamer d(GTGTACAC) has been determined at 2.0-A resolution. The alternating sequence adopts an A-DNA conformation with a novel purine-purine extra-Watson-Crick hydrogen bond involving the central guanine G3 (G11) and adenine A13 (A5) in the deep groove. The oligocation spermine binds in the floor of the deep groove by interacting with the bases and assumes an S-shape. Its dyad is coincident with that of the DNA, reminiscent of repressor binding to B-DNA. The terminal and central ammonium groups of the top half of spermine form hydrogen-bonding interactions to the 5'-bases, GTG, of one strand; then the spermine winds across the groove to interact with the corresponding set of bases on the other strand. The methylene groups of spermine form a hydrophobic cluster with the methyl groups of the thymines and the O6 atoms of the guanines of the TGT sequences on either side of the dyad. The observed mode of binding of spermine to A-DNA can serve as a model for deep groove binding in RNA and DNA-RNA hybrids that show a propensity also for the A-conformation. It will be of interest to see if base binding of spermine to DNA is involved in the regulation of gene expression, since spermine and other oligocations are ubiquitous in cells and their concentration is coupled to stages in cell cycle.  相似文献   

7.
The complex of the minor groove binding drug distamycin and the B-DNA oligomer d-(CGCAAATTTGCG) was investigated by molecular dynamics simulations. For this purpose, accurate atomic partial charges of distamycin were determined by extended quantum chemical calculations. The complex was simulated without water but with hydrated counterions. The oligomer without the drug was simulated in the same fashion and also with 1713 water molecules and sodium counterions. The simulations revealed that the binding of distamycin in the minor groove induces a stiffening of the DNA helix. The drug also prevents a transition from B-DNA to A-DNA that was found to occur rapidly (30 ps) in the segment without bound distamycin in a water-free environment but not in simulations including water. In other simulations, we investigated the relaxation processes after distamycin was moved from its preferred binding site, either radially or along the minor groove. Binding in the major groove was simulated as well and resulted in a bound configuration with the guanidinium end of distamycin close to two phosphate groups. We suggest that, in an aqueous environment, tight hydration shells covering the DNA backbone prevent such an arrangement and thus lead to distamycin's propensity for minor groove binding.  相似文献   

8.
We performed three 3-ns molecular dynamics simulations of d(CGCGAATTCGCG)2 using the AMBER 8 package to determine the effect of salt concentration on DNA conformational transitions. All the simulations were started with A-DNA, with different salt concentrations, and converged with B-DNA with similar conformational parameters. However, the dynamic processes of the three MD simulations were very different. We found that the conformation transition was slow in the solution with higher salt concentration. To determine the cause of this retardation, we performed three additional 1.5-ns simulations starting with B-DNA and with the salt concentrations corresponding to the simulations mentioned above. However, astonishingly, there was no delayed conformation evolution found in any of the three simulations. Thus, our simulation conclusion is that higher salt concentrations slows the A → B conformation transition, but have no effect on the final stable structure. Figure A-DNA and B-DNA. (a) is the canonical A-DNA, and (b) is the canonical B-DNA. Looking from the central major groove  相似文献   

9.
A-DNA is a stable alternative right-handed double helix that is favored by certain sequences (e.g., (dG)n.(dC)n) or under low humidity conditions. Earlier A-DNA structures of several DNA oligonucleotides and RNA.DNA chimeras have revealed some conformational variation that may be the result of sequence-dependent effects or crystal packing forces. In this study, four crystal structures of three decamer oligonucleotides, d(ACCGGCCGGT), d(ACCCGCGGGT), and r(GC)d(GTATACGC) in two crystal forms (either the P6(1)22 or the P2(1)2(1)2(1) space group) have been analyzed at high resolution to provide the molecular basis of the structural difference in an experimentally consistent manner. The study reveals that molecules crystallized in the same space group have a more similar A-DNA conformation, whereas the same molecule crystallized in different space groups has different (local) conformations. This suggests that even though the local structure is influenced by the crystal packing environments, the DNA molecule adjusts to adopt an overall conformation close to canonical A-DNA. For example, the six independent CpG steps in these four structures have different base-base stacking patterns, with their helical twist angles (omega) ranging from 28 degrees to 37 degrees. Our study further reveals the structural impact of different counter-ions on the A-DNA conformers. [Co(NH3)6]3+ has three unique A-DNA binding modes. One binds at the major groove side of a GpG step at the O6/N7 sites of guanine bases via hydrogen bonds. The other two modes involve the binding of ions to phosphates, either bridging across the narrow major groove or binding between two intra-strand adjacent phosphates. Those interactions may explain the recent spectroscopic and NMR observations that [Co(NH3)6]3+ is effective in inducing the B- to A-DNA transition for DNA with (G)n sequence. Interestingly, Ba2+ binds to the same O6/N7 sites on guanine by direct coordinations.  相似文献   

10.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

11.
A 75ps molecular dynamics simulation has been performed on a fully solvated complex of spermine with the B DNA decamer (dGdC)5.(dGdC)5. The simulation indicates a possible mechanism by which polyamines might induce the formation of a left-handed helix, the B to Z transition. Spermine was initially located in the major groove, hydrogen bonded to the helix. During the simulation the ligand migrates deeper into the DNA, maintaining strong hydrogen bonding to the central guanine bases and destroying the Watson-Crick base pairing with their respective cytosines. Significant rotation of these and other cytosine bases was observed, in part due to interactions of the helix with the aminopropyl chains of spermine. An intermediate BII conformation might be of importance in this process.  相似文献   

12.
Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute-solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interact more strongly with water molecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning's counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 A from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general, the observed water and ion atmosphere around the DNA sequences is the MD simulation is in good agreement with experimental observations.  相似文献   

13.
The preferred residence sites and the conformation of DNA‐bound polyamines are central to understanding the regulatory roles of polyamines. To this end, we have used a series of selective 13C‐edited and selective total correlation spectroscopy‐edited one‐dimensional (1D) nuclear Overhauser effect spectroscopy NMR experiments to determine a number of intramolecular 1H nuclear Overhauser effect (NOE) connectivities in 13C‐labelled spermine bound to the thrombin‐binding aptamer. The results provide evidence that the aptamer‐bound spermine adopts a conformation that optimizes electrostatic and hydrogen bond contacts with the aptamer backbone. The distance between the nitrogen atoms of the central aminobutyl is reduced by an increase in the population of gauche conformers at the C6–C7 bonds, which results in either a curved or S‐shaped spermine conformation. Molecular modelling contributes insight toward the mode of spermine binding of these spermine structures within the narrow grooves of DNA quadruplexes. In each case, the N5 ammonium group makes hydrogen bonds with two nearby phosphates across the narrow groove. Our results have implications for the understanding of chromatin structure and the rational design of quadruplex‐binding drugs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

A 75ps molecular dynamics simulation has been performed on a fully solvated complex of spermine with the B DNA decamer (dGdC)5 · (dGdC)5. The simulation indicates a possible mechanism by which polyamines might induce the formation of a left-handed helix, the B to Z transition. Spermine was initially located in the major groove, hydrogen bonded to the helix. During the simulation the ligand migrates deeper into the DNA, maintaining strong hydrogen bonding to the central guanine bases and destroying the Watson-Crick base pairing with their respective cytosines. Significant rotation of these and other cytosine bases was observed, in part due to interactions of the helix with the aminopropyl chains of spermine. An intermediate BII conformation might be of importance in this process.  相似文献   

15.
We used energy minimization of a molecular mechanical force field to evaluate spermine interactions with B-form DNA oligomers with either alternating purine/pyrimidine or homopolymeric sequences. Four different positions for spermine docking--within, along, and bridging the minor groove and bridging the major groove--were assessed for each sequence. Interaction at the major groove of alternating purine/pyrimidine sequences appears to be the most favorable of all models assessed, and are associated with significant bending of DNA. Interactions at the major groove of homopolymers were less favorable than those of heteropolymers and showed little or no bending. Interactions with the minor groove were most favorable for spermine positioned near the base of the groove, and became less favorable as spermine was moved toward the top of the groove. Association along the phosphate backbone alone was the least favorable of the interactions.  相似文献   

16.
The recently developed anthracycline 4'-epiadriamycin, an anti-cancer drug with improved activity, differs from adriamycin by inversion of the stereochemistry at the 4'-position. We have cocrystallized 4'-epiadriamycin with the DNA hexamer d(CGATCG) and solved the structure to 1.5 A resolution using x-ray crystallography. One drug molecule binds at each d(CG) step of the hexamer duplex. The anthracycline sugar binds in the minor groove. A feature of this complex which distinguishes it from the earlier DNA:adriamycin complex is a direct hydrogen bond from the 4'-hydroxyl group of the anthracycline sugar to the adenine N3 on the floor of the DNA minor groove. This hydrogen bond results directly from inversion of the stereochemistry at the 4'-position. Spermine molecules bind in the major groove of this complex. In anthracycline complexes with d(CGATCG) a spermine molecule binds to a continuous hydrophobic zone formed by the 5-methyl and C6 of a thymidine, C5 and C6 of a cytidine and the chromophore of the anthracycline. This report discusses three anthracycline complexes with d(CGATCG) in which the spermine molecules have different conformations yet form extensive van der Waals contacts with the same hydrophobic zone. Our results suggest that these hydrophobic interactions of spermine are DNA sequence specific and provide insight into the question of whether DNA:spermine complexes are delocalized and dynamic or site-specific and static.  相似文献   

17.
Cytosine methylation or bromination of the DNA sequence d(GGCGCC)2 is shown here to induce a novel extended and eccentric double helix, which we call E-DNA. Like B-DNA, E-DNA has a long helical rise and bases perpendicular to the helix axis. However, the 3'-endo sugar conformation gives the characteristic deep major groove and shallow minor groove of A-DNA. Also, if allowed to crystallize for a period of time longer than that yielding E-DNA, the methylated sequence forms standard A-DNA, suggesting that E-DNA is a kinetically trapped intermediate in the transition to A-DNA. Thus, the structures presented here chart a crystallographic pathway from B-DNA to A-DNA through the E-DNA intermediate in a single sequence. The E-DNA surface is highly accessible to solvent, with waters in the major groove sitting on exposed faces of the stacked nucleotides. We suggest that the geometry of the waters and the stacked base pairs would promote the spontaneous deamination of 5-methylcytosine in the transition mutation of dm5C-dG to dT-dA base pairs.  相似文献   

18.
N Schmid  J P Behr 《Biochemistry》1991,30(17):4357-4361
Although polyamines interact strongly with nucleic acids, X-ray and NMR studies have not revealed much structural information about spermine-DNA complexes. Therefore, it was of interest to look at the binding of polyamines to 32P-labeled DNA restriction fragments by sequencing gel electrophoresis of the photoaffinity cleavage products induced by polyaminobenzendiazonium salts. The shift of cleavage patterns observed on opposite strands as well as competition experiments with distamycin shows polyamines to be located in the minor groove of B-DNA and to depend on the nucleic acid polymorphism, jumping to the major groove in the A-form. The sequence selectivities of various polycations (spermine, putrescine, and cobalt (III) hexaammine) are similar and slightly favor A,T-rich regions. Taken together, these results show that polycations which are not point charges are guided by the electronegative potential along the nucleic acid and suggest fast crawling of the polyamine within the minor groove, due to individual NH2+ jumping between multiple equidistant and isoenergetic bidentate hydrogen-bonding sites. Such a picture could be the clue to the unexpected NMR and to the frequently silent X-ray behavior of polyamines when bound to DNA.  相似文献   

19.
Molecular mechanics calculations of the binding of spermine to a number of solvated DNA helices have led to the development of a new model for spermine complexation. The structural details of the complexes formed with d(GCGCGCGCGC)2 and d(ATATATATAT)2 decamers allowed a rationalization of the observed experimental differences for binding to these two helices. For d(ATATATATAT)2 it was concluded that spermine remains in a cross-major groove binding site. Conversely, for d(GCGCGCGCGC)2 spermine reorientation via specific ligand-base-pair hydrogen-bond formation allows complexation along the major groove. The solvent plays an important role in differentiating the two binding modes. A mechanism of spermine complexation to natural DNA is postulated from these results. Past experimental data are also considered in the context of the new model.  相似文献   

20.
The interaction of DNA with the polyamine spermine(4+) (Spm(4+)), sodium ions, and water molecules has been studied using molecular dynamics computer simulations in a system modeling a DNA crystal. The simulation model consisted of three B-DNA decamers in a periodic hexagonal cell, containing 1200 water molecules, 8 Spm(4+), 32 Na(+), and 4 Cl(-) ions. The present paper gives a more detailed account of a recently published report of this system and compares results on this mixed Spm(4+)/Na(+)-cation system with an molecular dynamics simulation carried out for the same DNA decamer under similar conditions with only sodium counterions (Korolev et al., J. Mol. Biol. 308:907). The presence of Spm(4+) makes significant influence on the DNA hydration and on the interaction of the sodium ions with DNA. Spermine pushes water molecules out of the minor groove, whereas Na(+) attracts and organizes water around DNA. The major binding site of the Spm(4+) amino groups and the Na(+) ions is the phosphate group of DNA. The flexible polyamine spermine displays a high presence in the minor groove but does not form long-lived and structurally defined complexes. Sodium ions compete with Spm(4+) for binding to the DNA bases in the minor groove. Sodium ions also have several strong binding sites in the major groove. The ability of water molecules, Spm(4+), and Na(+) to modulate the local structure of the DNA double helix is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号